Linear Programming and Algorithms for Communication Networks

Linear Programming and Algorithms for Communication Networks

Author: Eiji Oki

Publisher: CRC Press

Published: 2012-08-24

Total Pages: 210

ISBN-13: 1466552638

DOWNLOAD EBOOK

Explaining how to apply to mathematical programming to network design and control, Linear Programming and Algorithms for Communication Networks: A Practical Guide to Network Design, Control, and Management fills the gap between mathematical programming theory and its implementation in communication networks. From the basics all the way through to more advanced concepts, its comprehensive coverage provides readers with a solid foundation in mathematical programming for communication networks. Addressing optimization problems for communication networks, including the shortest path problem, max flow problem, and minimum-cost flow problem, the book covers the fundamentals of linear programming and integer linear programming required to address a wide range of problems. It also: Examines several problems on finding disjoint paths for reliable communications Addresses optimization problems in optical wavelength-routed networks Describes several routing strategies for maximizing network utilization for various traffic-demand models Considers routing problems in Internet Protocol (IP) networks Presents mathematical puzzles that can be tackled by integer linear programming (ILP) Using the GNU Linear Programming Kit (GLPK) package, which is designed for solving linear programming and mixed integer programming problems, it explains typical problems and provides solutions for communication networks. The book provides algorithms for these problems as well as helpful examples with demonstrations. Once you gain an understanding of how to solve LP problems for communication networks using the GLPK descriptions in this book, you will also be able to easily apply your knowledge to other solvers.


Linear Programming and Algorithms for Communication Networks

Linear Programming and Algorithms for Communication Networks

Author: Eiji Oki

Publisher: CRC Press

Published: 2012-08-24

Total Pages: 208

ISBN-13: 1466552646

DOWNLOAD EBOOK

Explaining how to apply to mathematical programming to network design and control, Linear Programming and Algorithms for Communication Networks: A Practical Guide to Network Design, Control, and Management fills the gap between mathematical programming theory and its implementation in communication networks. From the basics all the way through to m


Linear Programming and Algorithms for Communication Networks

Linear Programming and Algorithms for Communication Networks

Author: Eiji Oki

Publisher: CRC Press

Published: 2012-08-24

Total Pages: 210

ISBN-13: 1466578602

DOWNLOAD EBOOK

Explaining how to apply to mathematical programming to network design and control, Linear Programming and Algorithms for Communication Networks: A Practical Guide to Network Design, Control, and Management fills the gap between mathematical programming theory and its implementation in communication networks. From the basics all the way through to m


Graphs and Algorithms in Communication Networks

Graphs and Algorithms in Communication Networks

Author: Arie Koster

Publisher: Springer Science & Business Media

Published: 2009-12-01

Total Pages: 442

ISBN-13: 3642022502

DOWNLOAD EBOOK

Algorithmic discrete mathematics plays a key role in the development of information and communication technologies, and methods that arise in computer science, mathematics and operations research – in particular in algorithms, computational complexity, distributed computing and optimization – are vital to modern services such as mobile telephony, online banking and VoIP. This book examines communication networking from a mathematical viewpoint. The contributing authors took part in the European COST action 293 – a four-year program of multidisciplinary research on this subject. In this book they offer introductory overviews and state-of-the-art assessments of current and future research in the fields of broadband, optical, wireless and ad hoc networks. Particular topics of interest are design, optimization, robustness and energy consumption. The book will be of interest to graduate students, researchers and practitioners in the areas of networking, theoretical computer science, operations research, distributed computing and mathematics.


Linear Network Optimization

Linear Network Optimization

Author: Dimitri P. Bertsekas

Publisher: MIT Press

Published: 1991

Total Pages: 384

ISBN-13: 9780262023344

DOWNLOAD EBOOK

Linear Network Optimization presents a thorough treatment of classical approaches to network problems such as shortest path, max-flow, assignment, transportation, and minimum cost flow problems.


Graphs and Algorithms in Communication Networks

Graphs and Algorithms in Communication Networks

Author: Arie Koster

Publisher: Springer

Published: 2012-03-14

Total Pages: 426

ISBN-13: 9783642261633

DOWNLOAD EBOOK

Algorithmic discrete mathematics plays a key role in the development of information and communication technologies, and methods that arise in computer science, mathematics and operations research – in particular in algorithms, computational complexity, distributed computing and optimization – are vital to modern services such as mobile telephony, online banking and VoIP. This book examines communication networking from a mathematical viewpoint. The contributing authors took part in the European COST action 293 – a four-year program of multidisciplinary research on this subject. In this book they offer introductory overviews and state-of-the-art assessments of current and future research in the fields of broadband, optical, wireless and ad hoc networks. Particular topics of interest are design, optimization, robustness and energy consumption. The book will be of interest to graduate students, researchers and practitioners in the areas of networking, theoretical computer science, operations research, distributed computing and mathematics.


Algorithms

Algorithms

Author: Sanjoy Dasgupta

Publisher: McGraw-Hill Higher Education

Published: 2006

Total Pages: 338

ISBN-13: 0077388496

DOWNLOAD EBOOK

This text, extensively class-tested over a decade at UC Berkeley and UC San Diego, explains the fundamentals of algorithms in a story line that makes the material enjoyable and easy to digest. Emphasis is placed on understanding the crisp mathematical idea behind each algorithm, in a manner that is intuitive and rigorous without being unduly formal. Features include:The use of boxes to strengthen the narrative: pieces that provide historical context, descriptions of how the algorithms are used in practice, and excursions for the mathematically sophisticated. Carefully chosen advanced topics that can be skipped in a standard one-semester course but can be covered in an advanced algorithms course or in a more leisurely two-semester sequence.An accessible treatment of linear programming introduces students to one of the greatest achievements in algorithms. An optional chapter on the quantum algorithm for factoring provides a unique peephole into this exciting topic. In addition to the text DasGupta also offers a Solutions Manual which is available on the Online Learning Center."Algorithms is an outstanding undergraduate text equally informed by the historical roots and contemporary applications of its subject. Like a captivating novel it is a joy to read." Tim Roughgarden Stanford University


Geometric Programming for Communication Systems

Geometric Programming for Communication Systems

Author: Mung Chiang

Publisher: Now Publishers Inc

Published: 2005

Total Pages: 172

ISBN-13: 9781933019093

DOWNLOAD EBOOK

Recently Geometric Programming has been applied to study a variety of problems in the analysis and design of communication systems from information theory and queuing theory to signal processing and network protocols. Geometric Programming for Communication Systems begins its comprehensive treatment of the subject by providing an in-depth tutorial on the theory, algorithms, and modeling methods of Geometric Programming. It then gives a systematic survey of the applications of Geometric Programming to the study of communication systems. It collects in one place various published results in this area, which are currently scattered in several books and many research papers, as well as to date unpublished results. Geometric Programming for Communication Systems is intended for researchers and students who wish to have a comprehensive starting point for understanding the theory and applications of geometric programming in communication systems.


Handbook of Optimization in Telecommunications

Handbook of Optimization in Telecommunications

Author: Mauricio G.C. Resende

Publisher: Springer Science & Business Media

Published: 2008-12-10

Total Pages: 1120

ISBN-13: 0387301658

DOWNLOAD EBOOK

This comprehensive handbook brings together experts who use optimization to solve problems that arise in telecommunications. It is the first book to cover in detail the field of optimization in telecommunications. Recent optimization developments that are frequently applied to telecommunications are covered. The spectrum of topics covered includes planning and design of telecommunication networks, routing, network protection, grooming, restoration, wireless communications, network location and assignment problems, Internet protocol, World Wide Web, and stochastic issues in telecommunications. The book’s objective is to provide a reference tool for the increasing number of scientists and engineers in telecommunications who depend upon optimization.


Optimization of Computer Networks

Optimization of Computer Networks

Author: Pablo Pavón Mariño

Publisher: John Wiley & Sons

Published: 2016-05-02

Total Pages: 399

ISBN-13: 1119013356

DOWNLOAD EBOOK

This book covers the design and optimization of computer networks applying a rigorous optimization methodology, applicable to any network technology. It is organized into two parts. In Part 1 the reader will learn how to model network problems appearing in computer networks as optimization programs, and use optimization theory to give insights on them. Four problem types are addressed systematically – traffic routing, capacity dimensioning, congestion control and topology design. Part 2 targets the design of algorithms that solve network problems like the ones modeled in Part 1. Two main approaches are addressed – gradient-like algorithms inspiring distributed network protocols that dynamically adapt to the network, or cross-layer schemes that coordinate the cooperation among protocols; and those focusing on the design of heuristic algorithms for long term static network design and planning problems. Following a hands-on approach, the reader will have access to a large set of examples in real-life technologies like IP, wireless and optical networks. Implementations of models and algorithms will be available in the open-source Net2Plan tool from which the user will be able to see how the lessons learned take real form in algorithms, and reuse or execute them to obtain numerical solutions. An accompanying link to the author’s own Net2plan software enables readers to produce numerical solutions to a multitude of real-life problems in computer networks (www.net2plan.com).