Goal programming is one of the most widely used methodologies in operations research and management science, and encompasses most classes of multiple objective programming models. Ignizio provides a concise and lucid overview of (a) the linear goal programming model, (b) a computationally efficient algorithm for solution, (c) duality and sensitivity analysis and (d) extensions of the methodology to integer as well as non-linear models.
Goal Programming (GP) is perhaps the oldest and most widely used approach within the Multiple Criteria Decision Making (MCDM) paradigm. GP combines the logic of optimisation in mathematical programming with the decision maker's desire to satisfy several goals. The primary purpose of this book is to identify the critical issues in GP and to demonstrate different procedures capable of avoiding or mitigating the inherent pitfalls associated with these issues. The outcome of a search of the literature shows many instances where GP models produced misleading or even erroneous results simply because of a careless formulation of the problem. Rather than being in itself a textbook, Critical Issues in Goal Programming is designed to complement existing textbooks. It will be useful to students and researchers with a basic knowledge of GP as well as to those interested in building GP models which analyse real decision problems.
1. 1. Motivation This book is based on the view-tx)int that both public and private decision making, in practice, can often be ilrproved upon by means of fonnal (nonnative) decision nodels and methods. To sane extent, the validity of this statement can be measured by the irrpressive number of su=esses of disciplines as operations research and management science. Hcwever, as witnessed by the many discussions in the professional journals in these fields, many rrodels and methods do not completely meet the requirements of decision making in prac tice. Of all possible origins of these clear shortcomings, we main-· ly focus on only one: the fact that nost of these nodels and methods are unsuitable for decision situations in which multiple and possi bly conflicting objectives playa role, because they are concentra ted on the (optimal) fulfilment of only one objective. The need to account for multiple goals was observed relatively early. Hoffman [1955], while describing 'what seem to be the prin cipal areas (in linear prograrrrning) where new ideas and new methods are needed' gives an exanple with conflicting goals. In this pro blem, the assignrrent of relative weights is a great problem for the planning staff and is 'probably not the province of the mathemati cian engaged in solving this problem'. These remarks were true pre cursors of later develor:nents. Nevertheless, the need for methods dealing with multiple goals was not widely recognized until much later.
Practical Goal Programming is intended to allow academics and practitioners to be able to build effective goal programming models, to detail the current state of the art, and to lay the foundation for its future development and continued application to new and varied fields. Suitable as both a text and reference, its nine chapters first provide a brief history, fundamental definitions, and underlying philosophies, and then detail the goal programming variants and define them algebraically. Chapter 3 details the step-by-step formulation of the basic goal programming model, and Chapter 4 explores more advanced modeling issues and highlights some recently proposed extensions. Chapter 5 then details the solution methodologies of goal programming, concentrating on computerized solution by the Excel Solver and LINGO packages for each of the three main variants, and includes a discussion of the viability of the use of specialized goal programming packages. Chapter 6 discusses the linkages between Pareto Efficiency and goal programming. Chapters 3 to 6 are supported by a set of ten exercises, and an Excel spreadsheet giving the basic solution of each example is available at an accompanying website. Chapter 7 details the current state of the art in terms of the integration of goal programming with other techniques, and the text concludes with two case studies which were chosen to demonstrate the application of goal programming in practice and to illustrate the principles developed in Chapters 1 to 7. Chapter 8 details an application in healthcare, and Chapter 9 describes applications in portfolio selection.
Goal Programming Applications in Accounting 74 Goal Programming Applications in Agriculture 76 Goal Programming Applications in Economics 78 Goal Programming Applications in Engineering 79 Goal Programming Applications in Finance 80 Goal Programming Applications in Government 83 Goal Programming Applications in an International Context 88 Goal Programming Applications in Management 90 Goal Programming Applications in Marketing 97 Summary 98 CHAPTER 5. FUTURE TRENDS IN GOAL PROORAMMING 101 GP is Positioned for Growth 101 Shifting the Life Cycle of GP Research to Growth 103 Summary 107 Reference 108 APPENDIX A TEXTBOOKS, READINGS BOOKS AND MONOORAPHS ON GOAL PROORAMMING 109 APPENDIX B. JOURNAL RESEARCH PUBLICATIONS ON GOAL PROORAMMING 113 INDEX 213 viii LIST OF FIGURES Figure 1-1. Summary Relationship of GP with MS/OR and MCDM Figure 1-2. Frequency Distribution for GP Journal Publications Figure 1-3. Life Cycle ofGP Research Figure 2-1. Set of GP Efficient Solutions Figure 5-1. Life Cycle of GP Research ix LIST OF TABLES Table 1-1. MS/OR Topics and Their Related GP Topics Table 1-2. MCDM Subareas and Their Related GP Topics Table 1-3. Frequency Listing ofGP Journal Publications and Book Titles Table 2-1. Solutions for a Dominated GP Problem Table 2-2. Conversion ofLP Constraints to Goal Constraints Table 2-3. GP Citations on Dominance, Inferiority and Inefficiency Table 2-4. GP Citations on Relative Weighting, Prioritization and Incommensurability Table 2-5. MS/OR Topics and Their Related GP Topics Table 3-1. Citations on WeightedlPreemptive GP Methodology Table 3-2. Citations on Pure/Mixed Integer GP Methodology Table 3-3.
Textbook on 'goal programming', presenting a management technique for computer-aided decision making - covers theoretical and methodologycal aspects, practical applications, etc., and comments on some relevant aspects of linear programming. Diagrams, flow charts, and references.
Praise for the Second Edition: "This is quite a well-done book: very tightly organized, better-than-average exposition, and numerous examples, illustrations, and applications." —Mathematical Reviews of the American Mathematical Society An Introduction to Linear Programming and Game Theory, Third Edition presents a rigorous, yet accessible, introduction to the theoretical concepts and computational techniques of linear programming and game theory. Now with more extensive modeling exercises and detailed integer programming examples, this book uniquely illustrates how mathematics can be used in real-world applications in the social, life, and managerial sciences, providing readers with the opportunity to develop and apply their analytical abilities when solving realistic problems. This Third Edition addresses various new topics and improvements in the field of mathematical programming, and it also presents two software programs, LP Assistant and the Solver add-in for Microsoft Office Excel, for solving linear programming problems. LP Assistant, developed by coauthor Gerard Keough, allows readers to perform the basic steps of the algorithms provided in the book and is freely available via the book's related Web site. The use of the sensitivity analysis report and integer programming algorithm from the Solver add-in for Microsoft Office Excel is introduced so readers can solve the book's linear and integer programming problems. A detailed appendix contains instructions for the use of both applications. Additional features of the Third Edition include: A discussion of sensitivity analysis for the two-variable problem, along with new examples demonstrating integer programming, non-linear programming, and make vs. buy models Revised proofs and a discussion on the relevance and solution of the dual problem A section on developing an example in Data Envelopment Analysis An outline of the proof of John Nash's theorem on the existence of equilibrium strategy pairs for non-cooperative, non-zero-sum games Providing a complete mathematical development of all presented concepts and examples, Introduction to Linear Programming and Game Theory, Third Edition is an ideal text for linear programming and mathematical modeling courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for professionals who use game theory in business, economics, and management science.
This is a book on Linear-Fractional Programming (here and in what follows we will refer to it as "LFP"). The field of LFP, largely developed by Hungarian mathematician B. Martos and his associates in the 1960's, is concerned with problems of op timization. LFP problems deal with determining the best possible allo cation of available resources to meet certain specifications. In particular, they may deal with situations where a number of resources, such as people, materials, machines, and land, are available and are to be combined to yield several products. In linear-fractional programming, the goal is to determine a per missible allocation of resources that will maximize or minimize some specific showing, such as profit gained per unit of cost, or cost of unit of product produced, etc. Strictly speaking, linear-fractional programming is a special case of the broader field of Mathematical Programming. LFP deals with that class of mathematical programming problems in which the relations among the variables are linear: the con straint relations (i.e. the restrictions) must be in linear form and the function to be optimized (i.e. the objective function) must be a ratio of two linear functions.