Bayesian Estimation and Experimental Design in Linear Regression Models

Bayesian Estimation and Experimental Design in Linear Regression Models

Author: Jürgen Pilz

Publisher:

Published: 1991-07-09

Total Pages: 316

ISBN-13:

DOWNLOAD EBOOK

Presents a clear treatment of the design and analysis of linear regression experiments in the presence of prior knowledge about the model parameters. Develops a unified approach to estimation and design; provides a Bayesian alternative to the least squares estimator; and indicates methods for the construction of optimal designs for the Bayes estimator. Material is also applicable to some well-known estimators using prior knowledge that is not available in the form of a prior distribution for the model parameters; such as mixed linear, minimax linear and ridge-type estimators.


Design of Experiments

Design of Experiments

Author: Max Morris

Publisher: CRC Press

Published: 2010-07-27

Total Pages: 376

ISBN-13: 1439894906

DOWNLOAD EBOOK

Offering deep insight into the connections between design choice and the resulting statistical analysis, Design of Experiments: An Introduction Based on Linear Models explores how experiments are designed using the language of linear statistical models. The book presents an organized framework for understanding the statistical aspects of experiment


Applied Linear Statistical Models

Applied Linear Statistical Models

Author: Michael H. Kutner

Publisher: McGraw-Hill/Irwin

Published: 2005

Total Pages: 1396

ISBN-13: 9780072386882

DOWNLOAD EBOOK

Linear regression with one predictor variable; Inferences in regression and correlation analysis; Diagnosticis and remedial measures; Simultaneous inferences and other topics in regression analysis; Matrix approach to simple linear regression analysis; Multiple linear regression; Nonlinear regression; Design and analysis of single-factor studies; Multi-factor studies; Specialized study designs.


A First Course in the Design of Experiments

A First Course in the Design of Experiments

Author: John H. Skillings

Publisher: Routledge

Published: 2018-05-08

Total Pages: 696

ISBN-13: 1351469975

DOWNLOAD EBOOK

Most texts on experimental design fall into one of two distinct categories. There are theoretical works with few applications and minimal discussion on design, and there are methods books with limited or no discussion of the underlying theory. Furthermore, most of these tend to either treat the analysis of each design separately with little attempt to unify procedures, or they will integrate the analysis for the designs into one general technique. A First Course in the Design of Experiments: A Linear Models Approach stands apart. It presents theory and methods, emphasizes both the design selection for an experiment and the analysis of data, and integrates the analysis for the various designs with the general theory for linear models. The authors begin with a general introduction then lead students through the theoretical results, the various design models, and the analytical concepts that will enable them to analyze virtually any design. Rife with examples and exercises, the text also encourages using computers to analyze data. The authors use the SAS software package throughout the book, but also demonstrate how any regression program can be used for analysis. With its balanced presentation of theory, methods, and applications and its highly readable style, A First Course in the Design of Experiments proves ideal as a text for a beginning graduate or upper-level undergraduate course in the design and analysis of experiments.


Optimal Design of Experiments

Optimal Design of Experiments

Author: Friedrich Pukelsheim

Publisher: SIAM

Published: 2006-04-01

Total Pages: 527

ISBN-13: 0898716047

DOWNLOAD EBOOK

Optimal Design of Experiments offers a rare blend of linear algebra, convex analysis, and statistics. The optimal design for statistical experiments is first formulated as a concave matrix optimization problem. Using tools from convex analysis, the problem is solved generally for a wide class of optimality criteria such as D-, A-, or E-optimality. The book then offers a complementary approach that calls for the study of the symmetry properties of the design problem, exploiting such notions as matrix majorization and the Kiefer matrix ordering. The results are illustrated with optimal designs for polynomial fit models, Bayes designs, balanced incomplete block designs, exchangeable designs on the cube, rotatable designs on the sphere, and many other examples.


Handbook of Design and Analysis of Experiments

Handbook of Design and Analysis of Experiments

Author: Angela Dean

Publisher: CRC Press

Published: 2015-06-26

Total Pages: 946

ISBN-13: 146650434X

DOWNLOAD EBOOK

This carefully edited collection synthesizes the state of the art in the theory and applications of designed experiments and their analyses. It provides a detailed overview of the tools required for the optimal design of experiments and their analyses. The handbook covers many recent advances in the field, including designs for nonlinear models and algorithms applicable to a wide variety of design problems. It also explores the extensive use of experimental designs in marketing, the pharmaceutical industry, engineering and other areas.


Linear Models in Statistics

Linear Models in Statistics

Author: Alvin C. Rencher

Publisher: John Wiley & Sons

Published: 2008-01-07

Total Pages: 690

ISBN-13: 0470192607

DOWNLOAD EBOOK

The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.


A First Course in Design and Analysis of Experiments

A First Course in Design and Analysis of Experiments

Author: Gary W. Oehlert

Publisher: W. H. Freeman

Published: 2000-01-19

Total Pages: 600

ISBN-13: 9780716735106

DOWNLOAD EBOOK

Oehlert's text is suitable for either a service course for non-statistics graduate students or for statistics majors. Unlike most texts for the one-term grad/upper level course on experimental design, Oehlert's new book offers a superb balance of both analysis and design, presenting three practical themes to students: • when to use various designs • how to analyze the results • how to recognize various design options Also, unlike other older texts, the book is fully oriented toward the use of statistical software in analyzing experiments.