Linear and Nonlinear Parabolic Complex Equations

Linear and Nonlinear Parabolic Complex Equations

Author: Guo Chun Wen

Publisher: World Scientific

Published: 1999

Total Pages: 260

ISBN-13: 9789810238568

DOWNLOAD EBOOK

"This is a very interesting book written by a well-known expert on complex methods in partial differential equations. It contains many recent results, many of them published for the first time, some published originally in Chinese".Mathematical Reviews


Elliptic, Hyperbolic and Mixed Complex Equations with Parabolic Degeneracy

Elliptic, Hyperbolic and Mixed Complex Equations with Parabolic Degeneracy

Author: Guo Chun Wen

Publisher: World Scientific

Published: 2008

Total Pages: 453

ISBN-13: 9812779434

DOWNLOAD EBOOK

In the recent half-century, many mathematicians have investigated various problems on several equations of mixed type and obtained interesting results, with important applications to gas dynamics. However, the Tricomi problem of general mixed type equations of second order with parabolic degeneracy has not been completely solved, particularly the Tricomi and Frankl problems for general Chaplygin equation in multiply connected domains posed by L Bers, and the existence, regularity of solutions of the above problems for mixed equations with non-smooth degenerate curve in several domains posed by J M Rassias. The method revealed in this book is unlike any other, in which the hyperbolic number and hyperbolic complex function in hyperbolic domains, and the complex number and complex function in elliptic domains are used. The corresponding problems for first order complex equations with singular coefficients are first discussed, and then the problems for second order complex equations are considered, where we pose the new partial derivative notations and complex analytic methods such that the forms of the above first order complex equations in hyperbolic and elliptic domains are wholly identical. In the meantime, the estimates of solutions for the above problems are obtained, hence many open problems including the above TricomiOCo Bers and TricomiOCoFranklOCoRassias problems can be solved. Sample Chapter(s). Chapter 1: Elliptic Complex Equations of First Order (247 KB). Contents: Elliptic Complex Equations of First Order; Elliptic Complex Equations of Second Order; Hyperbolic Complex Equations of First and Second Orders; First Order Complex Equations of Mixed Type; Second Order Linear Equations of Mixed Type; Second Order Quasilinear Equations of Mixed Type. Readership: Graduate students and academics in analysis, differential equations and applied mathematics.


Linear and Quasilinear Complex Equations of Hyperbolic and Mixed Types

Linear and Quasilinear Complex Equations of Hyperbolic and Mixed Types

Author: Guo Chun Wen

Publisher: CRC Press

Published: 2002-08-22

Total Pages: 272

ISBN-13: 0203166582

DOWNLOAD EBOOK

This volume deals with first and second order complex equations of hyperbolic and mixed types. Various general boundary value problems for linear and quasilinear complex equations are investigated in detail. To obtain results for complex equations of mixed types, some discontinuous boundary value problems for elliptic complex equations are discusse


Nonlinear Elliptic Equations of the Second Order

Nonlinear Elliptic Equations of the Second Order

Author: Qing Han

Publisher: American Mathematical Soc.

Published: 2016-04-15

Total Pages: 378

ISBN-13: 1470426072

DOWNLOAD EBOOK

Nonlinear elliptic differential equations are a diverse subject with important applications to the physical and social sciences and engineering. They also arise naturally in geometry. In particular, much of the progress in the area in the twentieth century was driven by geometric applications, from the Bernstein problem to the existence of Kähler–Einstein metrics. This book, designed as a textbook, provides a detailed discussion of the Dirichlet problems for quasilinear and fully nonlinear elliptic differential equations of the second order with an emphasis on mean curvature equations and on Monge–Ampère equations. It gives a user-friendly introduction to the theory of nonlinear elliptic equations with special attention given to basic results and the most important techniques. Rather than presenting the topics in their full generality, the book aims at providing self-contained, clear, and “elementary” proofs for results in important special cases. This book will serve as a valuable resource for graduate students or anyone interested in this subject.


Real and Complex Clifford Analysis

Real and Complex Clifford Analysis

Author: Sha Huang

Publisher: Springer Science & Business Media

Published: 2006-03-16

Total Pages: 257

ISBN-13: 0387245367

DOWNLOAD EBOOK

Clifford analysis, a branch of mathematics that has been developed since about 1970, has important theoretical value and several applications. In this book, the authors introduce many properties of regular functions and generalized regular functions in real Clifford analysis, as well as harmonic functions in complex Clifford analysis. It covers important developments in handling the incommutativity of multiplication in Clifford algebra, the definitions and computations of high-order singular integrals, boundary value problems, and so on. In addition, the book considers harmonic analysis and boundary value problems in four kinds of characteristic fields proposed by Luogeng Hua for complex analysis of several variables. The great majority of the contents originate in the authors’ investigations, and this new monograph will be interesting for researchers studying the theory of functions.


Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems

Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems

Author: Jens Lang

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 161

ISBN-13: 3662044846

DOWNLOAD EBOOK

Nowadays there is an increasing emphasis on all aspects of adaptively gener ating a grid that evolves with the solution of a PDE. Another challenge is to develop efficient higher-order one-step integration methods which can handle very stiff equations and which allow us to accommodate a spatial grid in each time step without any specific difficulties. In this monograph a combination of both error-controlled grid refinement and one-step methods of Rosenbrock-type is presented. It is my intention to impart the beauty and complexity found in the theoretical investigation of the adaptive algorithm proposed here, in its realization and in solving non-trivial complex problems. I hope that this method will find many more interesting applications. Berlin-Dahlem, May 2000 Jens Lang Acknowledgements I have looked forward to writing this section since it is a pleasure for me to thank all friends who made this work possible and provided valuable input. I would like to express my gratitude to Peter Deuflhard for giving me the oppor tunity to work in the field of Scientific Computing. I have benefited immensly from his help to get the right perspectives, and from his continuous encourage ment and support over several years. He certainly will forgive me the use of Rosenbrock methods rather than extrapolation methods to integrate in time.


Boundary Value Problems, Integral Equations and Related Problems

Boundary Value Problems, Integral Equations and Related Problems

Author: Guo Chun Wen

Publisher: World Scientific

Published: 2011

Total Pages: 436

ISBN-13: 9814327867

DOWNLOAD EBOOK

In this volume, we report new results about various boundary value problems for partial differential equations and functional equations, theory and methods of integral equations and integral operators including singular integral equations, applications of boundary value problems and integral equations to mechanics and physics, numerical methods of integral equations and boundary value problems, theory and methods for inverse problems of mathematical physics, Clifford analysis and related problems. Contributors include: L Baratchart, B L Chen, D C Chen, S S Ding, K Q Lan, A Farajzadeh, M G Fei, T Kosztolowicz, A Makin, T Qian, J M Rassias, J Ryan, C-Q Ru, P Schiavone, P Wang, Q S Zhang, X Y Zhang, S Y Du, H Y Gao, X Li, Y Y Qiao, G C Wen, Z T Zhang, and others.


Further Progress in Analysis

Further Progress in Analysis

Author: International Society for Analysis, Applications, and Computation. Congress

Publisher: World Scientific

Published: 2009

Total Pages: 877

ISBN-13: 9812837329

DOWNLOAD EBOOK

The ISAAC (International Society for Analysis, its Applications and Computation) Congress, which has been held every second year since 1997, covers the major progress in analysis, applications and computation in recent years. In this proceedings volume, plenary lectures highlight the recent research results, while 17 sessions organized by well-known specialists reflect the state of the art of important subfields. This volume concentrates on partial differential equations, function spaces, operator theory, integral transforms and equations, potential theory, complex analysis and generalizations, inverse problems, functional differential and difference equations and integrable systems.


Superlinear Parabolic Problems

Superlinear Parabolic Problems

Author: Pavol Quittner

Publisher:

Published: 2007

Total Pages: 0

ISBN-13: 9780817684419

DOWNLOAD EBOOK

"This book is devoted to the qualitative study of solutions of superlinear elliptic and parabolic partial differential equations and systems. This class of problems contains, in particular, a number of reaction-diffusion systems which arise in various mathematical models, especially in chemistry, physics and biology." "The book is self-contained and up-to-date, it has a high didactic quality. It is devoted to problems that are intensively studied but have not been treated so far in depth in the book literature. The intended audience includes graduate and postgraduate students and researchers working in the field of partial differential equations and applied mathematics." -- Book Jacket.