Linear and Nonlinear Optical Spectroscopy and Microscopy
Author: Mengtao Sun
Publisher: Springer Nature
Published:
Total Pages: 125
ISBN-13: 9819936373
DOWNLOAD EBOOKRead and Download eBook Full
Author: Mengtao Sun
Publisher: Springer Nature
Published:
Total Pages: 125
ISBN-13: 9819936373
DOWNLOAD EBOOKAuthor: Barry R. Masters
Publisher: Oxford University Press
Published: 2008-05-19
Total Pages: 895
ISBN-13: 0198036825
DOWNLOAD EBOOKThe Handbook of Biomedical Nonlinear Optical Microscopy provides comprehensive treatment of the theories, techniques, and biomedical applications of nonlinear optics and microscopy for cell biologists, life scientists, biomedical engineers, and clinicians. The chapters are separated into basic and advanced sections, and provide both textual and graphical illustrations of all key concepts. The more basic sections are aimed at life scientists without advanced training in physics and mathematics, and tutorials are provided for the more challenging sections. The first part of the Handbook introduces the historical context of nonlinear microscopy. The second part presents the nonlinear optical theory of two- and multiphoton excited fluorescence (TPE, MPE) spectroscopy, second and third harmonic generation (SHG, THG) spectroscopy, and coherent anti-Stokes Raman spectroscopy (CARS). The third part introduces modern microscopic and spectroscopic instrumentation and techniques that are based on nonlinear optics. The fourth part provides key applications of nonlinear microscopy to the biomedical area: neurobiology, immunology, tumor biology, developmental biology, dermatology, and cellular metabolism. There are also chapters on nonlinear molecular probes, cellular damage, and nanoprocessing.
Author: MENGTAO. MU SUN (XIJIAO. LI, RUI.)
Publisher: Springer
Published: 2024-04-08
Total Pages: 0
ISBN-13: 9789819984169
DOWNLOAD EBOOKAuthor: Kitsakorn Locharoenrat
Publisher: CRC Press
Published: 2021-01-31
Total Pages: 345
ISBN-13: 1000091848
DOWNLOAD EBOOKIn recent years, optical properties of the unique atomic and molecular structures of materials have drawn great scientific interest. Linear optical properties of materials such as metals, metal oxides, magnetic oxides, and organic materials are based on energy transfer and find applications in wastewater treatment, forensic science, biomedical science, photovoltaics, nuclear technology, and LED displays. Nonlinear optical properties of materials are based on the nonlinear medium and find more advanced applications in frequency mixing generations and optical parametric oscillations. This book presents the underlying principles, implementation, and applications of the linear and nonlinear optical properties of materials and has been divided into two parts emphasizing these properties. The first part of the book, Linear Optics, discusses bimetallic nanoparticles in dielectric media and their integration to dye molecules to detect trace amounts of heavy metals at the nanometer level, as well as to enhance luminescence and image contrasts in forensic inspection and biomedical diagnosis. It shows how the integration of bimetallic nanoparticles into a ZnO matrix promotes broadening of the absorption spectrum from the ultraviolet to the visible wavelength. It explains the role of surface adsorption and photocatalytic degradation in dye-removal kinetics by Fe3O4 magnetic nanoparticles under pulsed white light. It also discusses the double-layer shielding tank design to safely store radioactive waste and photon propagation through the multilayer structures of a human tissue model. The second part of the book, Nonlinear Optics, presents general concepts such as electromagnetic theory, nonlinear medium, and wave propagation, as well as more advanced concepts such as second harmonic generation, phase matching, optical parametric interactions, different frequency generation, sum frequency generation, tunable laser, and optical resonant oscillator.
Author: Garth J. Simpson
Publisher: Cambridge University Press
Published: 2017-03-24
Total Pages: 499
ISBN-13: 052151908X
DOWNLOAD EBOOKPresents a clear systematic molecular-based description of nonlinear optical polarization analysis of chemical and biological assemblies.
Author: George Turrell
Publisher: Academic Press
Published: 1996-06-24
Total Pages: 493
ISBN-13: 0080540252
DOWNLOAD EBOOKOne of the first books devoted entirely to the subject of Raman microscopy, Raman Microscopy addresses issues of great interest to engineers working in Raman-microscope development and researchers concerned with areas ofapplication for this science. The book is written by several world recognized experts, who summarize the Raman effect before discussing the hardware and software involved in todays instruments. This format provides an excellent introduction to this up-and-coming discipline. All important applications, including those in materials science and earth science are covered in depth. - Includes extensive description of the instrumentation, the Raman microspectrograph, the treatment of data, and micro-Raman imaging - Examines the use of Raman microscopy in diverse applications, including some of the hyphenated methods - Summarizes the Raman effect - Discusses new uses for this technology
Author: Francesco S. Pavone
Publisher: Taylor & Francis
Published: 2016-04-19
Total Pages: 465
ISBN-13: 1439849153
DOWNLOAD EBOOKSecond-harmonic generation (SHG) microscopy has shown great promise for imaging live cells and tissues, with applications in basic science, medical research, and tissue engineering. Second Harmonic Generation Imaging offers a complete guide to this optical modality, from basic principles, instrumentation, methods, and image analysis to biomedical a
Author: Kai-Erik Peiponen
Publisher: Springer Science & Business Media
Published: 1998-11-30
Total Pages: 152
ISBN-13: 9783540645221
DOWNLOAD EBOOKThis book is devoted to dispersion theory in linear and nonlinear optics. Dispersion relations and methods of analysis in optical spectroscopy are derived with the aid of complex analysis. The book introduces the mathematical basis and derivations of various dispersion relations that are used in optical spectroscopy. In addition, it presents the dispersion theory of the nonlinear optical processes which are essential in modern optical spectroscopy. The book includes new methods such as the maximum entropy model for wavelength-dependent spectra analysis.
Author: Jens Rietdorf
Publisher: Springer Science & Business Media
Published: 2005-06-23
Total Pages: 344
ISBN-13: 9783540236986
DOWNLOAD EBOOKWith contributions by numerous experts
Author: KOJI SUGIOKA.
Publisher:
Published: 2019
Total Pages:
ISBN-13: 9783319695372
DOWNLOAD EBOOKThis handbook provides a comprehensive review of the entire field of laser micro and nano processing, including not only a detailed introduction to individual laser processing techniques but also the fundamentals of laser-matter interaction and lasers, optics, equipment, diagnostics, as well as monitoring and measurement techniques for laser processing. Consisting of 11 sections, each composed of 4 to 6 chapters written by leading experts in the relevant field. Each main part of the handbook is supervised by its own part editor(s) so that high-quality content as well as completeness are assured. The book provides essential scientific and technical information to researchers and engineers already working in the field as well as students and young scientists planning to work in the area in the future. Lasers found application in materials processing practically since their invention in 1960, and are currently used widely in manufacturing. The main driving force behind this fact is that the lasers can provide unique solutions in material processing with high quality, high efficiency, high flexibility, high resolution, versatility and low environmental load. Macro-processing based on thermal process using infrared lasers such as CO2 lasers has been the mainstream in the early stages, while research and development of micro- and nano-processing are becoming increasingly more active as short wavelength and/or short pulse width lasers have been developed. In particular, recent advances in ultrafast lasers have opened up a new avenue to laser material processing due to the capabilities of ultrahigh precision micro- and nanofabrication of diverse materials. This handbook is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of laser micro- and nanoengineering. This comprehensive source makes readers familiar with a broad spectrum of approaches to solve all relevant problems in science and technology. This handbook is the ultimate desk reference for all people working in the field.