Essential Linear Algebra with Applications

Essential Linear Algebra with Applications

Author: Titu Andreescu

Publisher: Springer

Published: 2014-10-14

Total Pages: 498

ISBN-13: 0817646361

DOWNLOAD EBOOK

Rooted in a pedagogically successful problem-solving approach to linear algebra, the present work fills a gap in the literature that is sharply divided between elementary texts and books that are too advanced to appeal to a wide audience. It clearly develops the theoretical foundations of vector spaces, linear equations, matrix algebra, eigenvectors, and orthogonality, while simultaneously emphasizing applications and connections to fields such as biology, economics, computer graphics, electrical engineering, cryptography, and political science. Ideal as an introduction to linear algebra, the extensive exercises and well-chosen applications also make this text suitable for advanced courses at the junior or senior undergraduate level. Furthermore, it can serve as a colorful supplementary problem book, reference, or self-study manual for professional scientists and mathematicians. Complete with bibliography and index, "Essential Linear Algebra with Applications" is a natural bridge between pure and applied mathematics and the natural and social sciences, appropriate for any student or researcher who needs a strong footing in the theory, problem-solving, and model-building that are the subject’s hallmark.


Fundamentals of Linear Algebra

Fundamentals of Linear Algebra

Author: J.S. Chahal

Publisher: CRC Press

Published: 2018-12-07

Total Pages: 184

ISBN-13: 0429758103

DOWNLOAD EBOOK

Fundamentals of Linear Algebra is like no other book on the subject. By following a natural and unified approach to the subject it has, in less than 250 pages, achieved a more complete coverage of the subject than books with more than twice as many pages. For example, the textbooks in use in the United States prove the existence of a basis only for finite dimensional vector spaces. This book proves it for any given vector space. With his experience in algebraic geometry and commutative algebra, the author defines the dimension of a vector space as its Krull dimension. By doing so, most of the facts about bases when the dimension is finite, are trivial consequences of this definition. To name one, the replacement theorem is no longer needed. It becomes obvious that any two bases of a finite dimensional vector space contain the same number of vectors. Moreover, this definition of the dimension works equally well when the geometric objects are nonlinear. Features: Presents theories and applications in an attempt to raise expectations and outcomes The subject of linear algebra is presented over arbitrary fields Includes many non-trivial examples which address real-world problems About the Author: Dr. J.S. Chahal is a professor of mathematics at Brigham Young University. He received his Ph.D. from Johns Hopkins University and after spending a couple of years at the University of Wisconsin as a post doc, he joined Brigham Young University as an assistant professor and has been there ever since. He specializes and has published a number of papers about number theory. For hobbies, he likes to travel and hike, the reason he accepted the position at Brigham Young University


No Bullshit Guide to Linear Algebra

No Bullshit Guide to Linear Algebra

Author: Ivan Savov

Publisher:

Published: 2020-10-25

Total Pages: 596

ISBN-13: 9780992001025

DOWNLOAD EBOOK

This textbook covers the material for an undergraduate linear algebra course: vectors, matrices, linear transformations, computational techniques, geometric constructions, and theoretical foundations. The explanations are given in an informal conversational tone. The book also contains 100+ problems and exercises with answers and solutions. A special feature of this textbook is the prerequisites chapter that covers topics from high school math, which are necessary for learning linear algebra. The presence of this chapter makes the book suitable for beginners and the general audience-readers need not be math experts to read this book. Another unique aspect of the book are the applications chapters (Ch 7, 8, and 9) that discuss applications of linear algebra to engineering, computer science, economics, chemistry, machine learning, and even quantum mechanics.


Basics of Matrix Algebra for Statistics with R

Basics of Matrix Algebra for Statistics with R

Author: Nick Fieller

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 208

ISBN-13: 1315360055

DOWNLOAD EBOOK

A Thorough Guide to Elementary Matrix Algebra and Implementation in R Basics of Matrix Algebra for Statistics with R provides a guide to elementary matrix algebra sufficient for undertaking specialized courses, such as multivariate data analysis and linear models. It also covers advanced topics, such as generalized inverses of singular and rectangular matrices and manipulation of partitioned matrices, for those who want to delve deeper into the subject. The book introduces the definition of a matrix and the basic rules of addition, subtraction, multiplication, and inversion. Later topics include determinants, calculation of eigenvectors and eigenvalues, and differentiation of linear and quadratic forms with respect to vectors. The text explores how these concepts arise in statistical techniques, including principal component analysis, canonical correlation analysis, and linear modeling. In addition to the algebraic manipulation of matrices, the book presents numerical examples that illustrate how to perform calculations by hand and using R. Many theoretical and numerical exercises of varying levels of difficulty aid readers in assessing their knowledge of the material. Outline solutions at the back of the book enable readers to verify the techniques required and obtain numerical answers. Avoiding vector spaces and other advanced mathematics, this book shows how to manipulate matrices and perform numerical calculations in R. It prepares readers for higher-level and specialized studies in statistics.


Linear Algebra

Linear Algebra

Author: Przemyslaw Bogacki

Publisher: American Mathematical Soc.

Published: 2019-01-24

Total Pages: 397

ISBN-13: 1470443848

DOWNLOAD EBOOK

Linear Algebra: Concepts and Applications is designed to be used in a first linear algebra course taken by mathematics and science majors. It provides a complete coverage of core linear algebra topics, including vectors and matrices, systems of linear equations, general vector spaces, linear transformations, eigenvalues, and eigenvectors. All results are carefully, clearly, and rigorously proven. The exposition is very accessible. The applications of linear algebra are extensive and substantial—several of those recur throughout the text in different contexts, including many that elucidate concepts from multivariable calculus. Unusual features of the text include a pervasive emphasis on the geometric interpretation and viewpoint as well as a very complete treatment of the singular value decomposition. The book includes over 800 exercises and numerous references to the author's custom software Linear Algebra Toolkit.


Handbook of Linear Algebra, Second Edition

Handbook of Linear Algebra, Second Edition

Author: Leslie Hogben

Publisher: CRC Press

Published: 2013-11-26

Total Pages: 1906

ISBN-13: 1466507284

DOWNLOAD EBOOK

With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters. New to the Second Edition Separate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of matrices, generalized inverses, matrices over finite fields, invariant subspaces, representations of quivers, and spectral sets New chapters on combinatorial matrix theory topics, such as tournaments, the minimum rank problem, and spectral graph theory, as well as numerical linear algebra topics, including algorithms for structured matrix computations, stability of structured matrix computations, and nonlinear eigenvalue problems More chapters on applications of linear algebra, including epidemiology and quantum error correction New chapter on using the free and open source software system Sage for linear algebra Additional sections in the chapters on sign pattern matrices and applications to geometry Conjectures and open problems in most chapters on advanced topics Highly praised as a valuable resource for anyone who uses linear algebra, the first edition covered virtually all aspects of linear algebra and its applications. This edition continues to encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, and applications of linear algebra to various disciplines while also covering up-to-date software packages for linear algebra computations.


Basic Linear Algebra

Basic Linear Algebra

Author: T.S. Blyth

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 242

ISBN-13: 1447106814

DOWNLOAD EBOOK

Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers: this will take the form of a tutorial on the use of the "LinearAlgebra" package in MAPLE 7 and will deal with all the aspects of linear algebra developed within the book.


Linear Algebra For Dummies

Linear Algebra For Dummies

Author: Mary Jane Sterling

Publisher: John Wiley & Sons

Published: 2009-06-05

Total Pages: 387

ISBN-13: 0470538163

DOWNLOAD EBOOK

Learn to: Solve linear algebra equations in several ways Put data in order with matrices Determine values with determinants Work with eigenvalues and eigenvectors Your hands-on guide to real-world applications of linear algebra Does linear algebra leave you feeling lost? No worries this easy-to-follow guide explains the how and the why of solving linear algebra problems in plain English. From matrices to vector spaces to linear transformations, you'll understand the key concepts and see how they relate to everything from genetics to nutrition to spotted owl extinction. Line up the basics discover several different approaches to organizing numbers and equations, and solve systems of equations algebraically or with matrices Relate vectors and linear transformations link vectors and matrices with linear combinations and seek solutions of homogeneous systems Evaluate determinants see how to perform the determinant function on different sizes of matrices and take advantage of Cramer's rule Hone your skills with vector spaces determine the properties of vector spaces and their subspaces and see linear transformation in action Tackle eigenvalues and eigenvectors define and solve for eigenvalues and eigenvectors and understand how they interact with specific matrices Open the book and find: Theoretical and practical ways of solving linear algebra problems Definitions of terms throughout and in the glossary New ways of looking at operations How linear algebra ties together vectors, matrices, determinants, and linear transformations Ten common mathematical representations of Greek letters Real-world applications of matrices and determinants


Introduction to Linear Algebra

Introduction to Linear Algebra

Author: Frank M. Stewart

Publisher: Courier Dover Publications

Published: 2019-07-17

Total Pages: 307

ISBN-13: 0486841510

DOWNLOAD EBOOK

Introduction to Linear Algebra stresses finite dimensional vector spaces and linear transformations. Intended for undergraduate majors in mathematics, applied mathematics, chemistry, and physics, the treatment's only prerequisite is a first course in calculus. Proofs are given in detail, and carefully chosen problems demonstrate the variety of situations in which these concepts arise. After a brief Introduction, the text advances to chapters on the plane, linear dependence, span, dimension, bases, and subspaces. Subsequent chapters explore linear transformations, the dual space in terms of multilinear forms and determinants, a traditional treatment of determinants, and inner product spaces. Extensive Appendixes cover equations and identities; variables, quantifiers, and unknowns; sets; proofs; indices and summations; and functions.


Introduction to Linear Algebra and Differential Equations

Introduction to Linear Algebra and Differential Equations

Author: John W. Dettman

Publisher: Courier Corporation

Published: 2012-10-05

Total Pages: 442

ISBN-13: 0486158314

DOWNLOAD EBOOK

Excellent introductory text focuses on complex numbers, determinants, orthonormal bases, symmetric and hermitian matrices, first order non-linear equations, linear differential equations, Laplace transforms, Bessel functions, more. Includes 48 black-and-white illustrations. Exercises with solutions. Index.