Linear Algebra in Signals, Systems, and Control
Author: Biswa Nath Datta
Publisher: SIAM
Published: 1988-01-01
Total Pages: 692
ISBN-13: 9780898712230
DOWNLOAD EBOOKRead and Download eBook Full
Author: Biswa Nath Datta
Publisher: SIAM
Published: 1988-01-01
Total Pages: 692
ISBN-13: 9780898712230
DOWNLOAD EBOOKAuthor: John S. Bay
Publisher: McGraw-Hill Science, Engineering & Mathematics
Published: 1999
Total Pages: 600
ISBN-13:
DOWNLOAD EBOOKSpans a broad range of linear system theory concepts, but does so in a complete and sequential style. It is suitable for a first-year graduate or advanced undergraduate course in any field of engineering. State space methods are derived from first principles while drawing on the students' previous understanding of physical and mathematical concepts. The text requires only a knowledge of basic signals and systems theory, but takes the student, in a single semester, all the way through state feedback, observers, Kalman filters, and elementary I.Q.G. control.
Author: Peter Butkovič
Publisher: Springer Science & Business Media
Published: 2010-08-05
Total Pages: 281
ISBN-13: 1849962995
DOWNLOAD EBOOKRecent years have seen a significant rise of interest in max-linear theory and techniques. Specialised international conferences and seminars or special sessions devoted to max-algebra have been organised. This book aims to provide a first detailed and self-contained account of linear-algebraic aspects of max-algebra for general (that is both irreducible and reducible) matrices. Among the main features of the book is the presentation of the fundamental max-algebraic theory (Chapters 1-4), often scattered in research articles, reports and theses, in one place in a comprehensive and unified form. This presentation is made with all proofs and in full generality (that is for both irreducible and reducible matrices). Another feature is the presence of advanced material (Chapters 5-10), most of which has not appeared in a book before and in many cases has not been published at all. Intended for a wide-ranging readership, this book will be useful for anyone with basic mathematical knowledge (including undergraduate students) who wish to learn fundamental max-algebraic ideas and techniques. It will also be useful for researchers working in tropical geometry or idempotent analysis.
Author: Dennis S. Bernstein
Publisher: Princeton University Press
Published: 2009-07-26
Total Pages: 1183
ISBN-13: 0691140391
DOWNLOAD EBOOKEach chapter in this book describes relevant background theory followed by specialized results. Hundreds of identities, inequalities, and matrix facts are stated clearly with cross references, citations to the literature, and illuminating remarks.
Author: Lorenzo Farina
Publisher: John Wiley & Sons
Published: 2011-09-30
Total Pages: 322
ISBN-13: 111803127X
DOWNLOAD EBOOKA complete study on an important class of linear dynamicalsystems-positive linear systems One of the most often-encountered systems in nearly all areas ofscience and technology, positive linear systems is a specific butremarkable and fascinating class. Renowned scientists LorenzoFarina and Sergio Rinaldi introduce readers to the world ofpositive linear systems in their rigorous but highly accessiblebook, rich in applications, examples, and figures. This professional reference is divided into three main parts: Thefirst part contains the definitions and basic properties ofpositive linear systems. The second part, following the theoreticalexposition, reports the main conceptual results, consideringapplicable examples taken from a number of widely used models. Thethird part is devoted to the study of some classes of positivelinear systems of particular relevance in applications (such as theLeontief model, the Leslie model, the Markov chains, thecompartmental systems, and the queueing systems). Readers familiarwith linear algebra and linear systems theory will appreciate theway arguments are treated and presented. Extraordinarily comprehensive, Positive Linear Systemsfeatures: * Applications from a variety of backgrounds including modeling,control engineering, computer science, demography, economics,bioengineering, chemistry, and ecology * References and annotated bibliographies throughout the book * Two appendices concerning linear algebra and linear systemstheory for readers unfamiliar with the mathematics used Farina and Rinaldi make no effort to hide their enthusiasm for thetopics presented, making Positive Linear Systems: Theory andApplications an indispensable resource for researchers andprofessionals in a broad range of fields.
Author: Frank M. Callier
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 524
ISBN-13: 1461209579
DOWNLOAD EBOOKThis book is the result of our teaching over the years an undergraduate course on Linear Optimal Systems to applied mathematicians and a first-year graduate course on Linear Systems to engineers. The contents of the book bear the strong influence of the great advances in the field and of its enormous literature. However, we made no attempt to have a complete coverage. Our motivation was to write a book on linear systems that covers finite dimensional linear systems, always keeping in mind the main purpose of engineering and applied science, which is to analyze, design, and improve the performance of phy sical systems. Hence we discuss the effect of small nonlinearities, and of perturbations of feedback. It is our on the data; we face robustness issues and discuss the properties hope that the book will be a useful reference for a first-year graduate student. We assume that a typical reader with an engineering background will have gone through the conventional undergraduate single-input single-output linear systems course; an elementary course in control is not indispensable but may be useful for motivation. For readers from a mathematical curriculum we require only familiarity with techniques of linear algebra and of ordinary differential equations.
Author: Chang-Hee Won
Publisher: Springer Science & Business Media
Published: 2010-07-08
Total Pages: 368
ISBN-13: 0817647953
DOWNLOAD EBOOKThis volume is a collection of chapters covering recent advances in stochastic optimal control theory and algebraic systems theory. The book will be a useful reference for researchers and graduate students in systems and control, algebraic systems theory, and applied mathematics. Requiring only knowledge of undergraduate-level control and systems theory, the work may be used as a supplementary textbook in a graduate course on optimal control or algebraic systems theory.
Author: João P. Hespanha
Publisher: Princeton University Press
Published: 2018-02-13
Total Pages: 352
ISBN-13: 0691179573
DOWNLOAD EBOOKA fully updated textbook on linear systems theory Linear systems theory is the cornerstone of control theory and a well-established discipline that focuses on linear differential equations from the perspective of control and estimation. This updated second edition of Linear Systems Theory covers the subject's key topics in a unique lecture-style format, making the book easy to use for instructors and students. João Hespanha looks at system representation, stability, controllability and state feedback, observability and state estimation, and realization theory. He provides the background for advanced modern control design techniques and feedback linearization and examines advanced foundational topics, such as multivariable poles and zeros and LQG/LQR. The textbook presents only the most essential mathematical derivations and places comments, discussion, and terminology in sidebars so that readers can follow the core material easily and without distraction. Annotated proofs with sidebars explain the techniques of proof construction, including contradiction, contraposition, cycles of implications to prove equivalence, and the difference between necessity and sufficiency. Annotated theoretical developments also use sidebars to discuss relevant commands available in MATLAB, allowing students to understand these tools. This second edition contains a large number of new practice exercises with solutions. Based on typical problems, these exercises guide students to succinct and precise answers, helping to clarify issues and consolidate knowledge. The book's balanced chapters can each be covered in approximately two hours of lecture time, simplifying course planning and student review. Easy-to-use textbook in unique lecture-style format Sidebars explain topics in further detail Annotated proofs and discussions of MATLAB commands Balanced chapters can each be taught in two hours of course lecture New practice exercises with solutions included
Author: Paul Van Dooren
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 203
ISBN-13: 1461384192
DOWNLOAD EBOOKDuring the past decade the interaction between control theory and linear algebra has been ever increasing, giving rise to new results in both areas. As a natural outflow of this research, this book presents information on this interdisciplinary area. The cross-fertilization between control and linear algebra can be found in subfields such as Numerical Linear Algebra, Canonical Forms, Ring-theoretic Methods, Matrix Theory, and Robust Control. This book's editors were challenged to present the latest results in these areas and to find points of common interest. This volume reflects very nicely the interaction: the range of topics seems very wide indeed, but the basic problems and techniques are always closely connected. And the common denominator in all of this is, of course, linear algebra. This book is suitable for both mathematicians and students.
Author: Maxim A. Olshanskii
Publisher: SIAM
Published: 2014-07-21
Total Pages: 257
ISBN-13: 1611973465
DOWNLOAD EBOOKIterative Methods for Linear Systems?offers a mathematically rigorous introduction to fundamental iterative methods for systems of linear algebraic equations. The book distinguishes itself from other texts on the topic by providing a straightforward yet comprehensive analysis of the Krylov subspace methods, approaching the development and analysis of algorithms from various algorithmic and mathematical perspectives, and going beyond the standard description of iterative methods by connecting them in a natural way to the idea of preconditioning.??