Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness

Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness

Author: Hubert Hennion

Publisher: Springer

Published: 2003-07-01

Total Pages: 150

ISBN-13: 3540446230

DOWNLOAD EBOOK

The usefulness of from the of techniques perturbation theory operators, to kernel for limit theorems for a applied quasi-compact positive Q, obtaining Markov chains for stochastic of or dynamical by describing properties systems, of Perron- Frobenius has been demonstrated in several All use a operator, papers. these works share the features the features that must be same specific general ; used in each stem from the nature of the functional particular case precise space where the of is and from the number of quasi-compactness Q proved eigenvalues of of modulus 1. We here a functional framework for Q give general analytical this method and we the aforementioned behaviour within it. It asymptotic prove is worth that this framework is to allow the unified noticing sufficiently general treatment of all the cases considered in the literature the previously specific ; characters of model translate into the verification of of simple hypotheses every a functional nature. When to Markov kernels or to Perr- applied Lipschitz Frobenius associated with these statements rise operators expanding give maps, to new results and the of known The main clarify proofs already properties. of the deals with a Markov kernel for which 1 is a part quasi-compact Q paper of modulus 1. An essential but is not the simple eigenvalue unique eigenvalue element of the work is the of the of peripheral Q precise description spectrums and of its To conclude the the results obtained perturbations.


Beyond Partial Differential Equations

Beyond Partial Differential Equations

Author: Horst Reinhard Beyer

Publisher: Springer

Published: 2007-04-10

Total Pages: 291

ISBN-13: 3540711295

DOWNLOAD EBOOK

This book introduces the treatment of linear and nonlinear (quasi-linear) abstract evolution equations by methods from the theory of strongly continuous semigroups. The theoretical part is accessible to graduate students with basic knowledge in functional analysis, with only some examples requiring more specialized knowledge from the spectral theory of linear, self-adjoint operators in Hilbert spaces. Emphasis is placed on equations of the hyperbolic type which are less often treated in the literature.


Mathematical Models of Granular Matter

Mathematical Models of Granular Matter

Author: Gianfranco Capriz

Publisher: Springer Science & Business Media

Published: 2008-04-18

Total Pages: 228

ISBN-13: 3540782761

DOWNLOAD EBOOK

Granular matter displays a variety of peculiarities that distinguish it from other appearances studied in condensed matter physics and renders its overall mathematical modelling somewhat arduous. Prominent directions in the modelling granular flows are analyzed from various points of view. Foundational issues, numerical schemes and experimental results are discussed. The volume furnishes a rather complete overview of the current research trends in the mechanics of granular matter. Various chapters introduce the reader to different points of view and related techniques. New models describing granular bodies as complex bodies are presented. Results on the analysis of the inelastic Boltzmann equations are collected in different chapters. Gallavotti-Cohen symmetry is also discussed.


Mathematical Theory of Feynman Path Integrals

Mathematical Theory of Feynman Path Integrals

Author: Sergio Albeverio

Publisher: Springer

Published: 2008-05-06

Total Pages: 184

ISBN-13: 3540769560

DOWNLOAD EBOOK

The 2nd edition of LNM 523 is based on the two first authors' mathematical approach of this theory presented in its 1st edition in 1976. An entire new chapter on the current forefront of research has been added. Except for this new chapter and the correction of a few misprints, the basic material and presentation of the first edition has been maintained. At the end of each chapter the reader will also find notes with further bibliographical information.


The Method of Approximate Inverse: Theory and Applications

The Method of Approximate Inverse: Theory and Applications

Author: Thomas Schuster

Publisher: Springer

Published: 2007-04-26

Total Pages: 193

ISBN-13: 3540712275

DOWNLOAD EBOOK

This book is concerned with the method of approximate inverse which is a regularization technique for stably solving inverse problems in various settings. It demonstrates the performance and functionality of the method on several examples from medical imaging and non-destructive testing, such as computerized tomography, Doppler tomography, SONAR, X-ray diffractometry and thermoacoustic computerized tomography.


Fluctuation Theory for Lévy Processes

Fluctuation Theory for Lévy Processes

Author: Ronald A. Doney

Publisher: Springer

Published: 2007-04-25

Total Pages: 154

ISBN-13: 3540485112

DOWNLOAD EBOOK

Lévy processes, that is, processes in continuous time with stationary and independent increments, form a flexible class of models, which have been applied to the study of storage processes, insurance risk, queues, turbulence, laser cooling, and of course finance, where they include particularly important examples having "heavy tails." Their sample path behaviour poses a variety of challenging and fascinating problems, which are addressed in detail.


Arithmetical Investigations

Arithmetical Investigations

Author: Shai M. J. Haran

Publisher: Springer Science & Business Media

Published: 2008-04-25

Total Pages: 224

ISBN-13: 3540783784

DOWNLOAD EBOOK

In this volume the author further develops his philosophy of quantum interpolation between the real numbers and the p-adic numbers. The p-adic numbers contain the p-adic integers Zp which are the inverse limit of the finite rings Z/pn. This gives rise to a tree, and probability measures w on Zp correspond to Markov chains on this tree. From the tree structure one obtains special basis for the Hilbert space L2(Zp,w). The real analogue of the p-adic integers is the interval [-1,1], and a probability measure w on it gives rise to a special basis for L2([-1,1],w) - the orthogonal polynomials, and to a Markov chain on "finite approximations" of [-1,1]. For special (gamma and beta) measures there is a "quantum" or "q-analogue" Markov chain, and a special basis, that within certain limits yield the real and the p-adic theories. This idea can be generalized variously. In representation theory, it is the quantum general linear group GLn(q)that interpolates between the p-adic group GLn(Zp), and between its real (and complex) analogue -the orthogonal On (and unitary Un )groups. There is a similar quantum interpolation between the real and p-adic Fourier transform and between the real and p-adic (local unramified part of) Tate thesis, and Weil explicit sums.


Stability of Queueing Networks

Stability of Queueing Networks

Author: Maury Bramson

Publisher: Springer Science & Business Media

Published: 2008-06-26

Total Pages: 201

ISBN-13: 3540688951

DOWNLOAD EBOOK

Queueing networks constitute a large family of stochastic models, involving jobs that enter a network, compete for service, and eventually leave the network upon completion of service. Since the early 1990s, substantial attention has been devoted to the question of when such networks are stable. This volume presents a summary of such work. Emphasis is placed on the use of fluid models in showing stability, and on examples of queueing networks that are unstable even when the arrival rate is less than the service rate. The material of this volume is based on a series of nine lectures given at the Saint-Flour Probability Summer School 2006. Lectures were also given by Alice Guionnet and Steffen Lauritzen.


Mathematical Epidemiology

Mathematical Epidemiology

Author: Fred Brauer

Publisher: Springer

Published: 2008-04-13

Total Pages: 415

ISBN-13: 3540789111

DOWNLOAD EBOOK

Based on lecture notes of two summer schools with a mixed audience from mathematical sciences, epidemiology and public health, this volume offers a comprehensive introduction to basic ideas and techniques in modeling infectious diseases, for the comparison of strategies to plan for an anticipated epidemic or pandemic, and to deal with a disease outbreak in real time. It covers detailed case studies for diseases including pandemic influenza, West Nile virus, and childhood diseases. Models for other diseases including Severe Acute Respiratory Syndrome, fox rabies, and sexually transmitted infections are included as applications. Its chapters are coherent and complementary independent units. In order to accustom students to look at the current literature and to experience different perspectives, no attempt has been made to achieve united writing style or unified notation. Notes on some mathematical background (calculus, matrix algebra, differential equations, and probability) have been prepared and may be downloaded at the web site of the Centre for Disease Modeling (www.cdm.yorku.ca).