Limit Analysis and Soil Plasticity

Limit Analysis and Soil Plasticity

Author: Wai-Fah Chen

Publisher: Elsevier

Published: 2013-07-10

Total Pages: 653

ISBN-13: 0444601066

DOWNLOAD EBOOK

Developments in Geotechnical Engineering, Volume 7: Limit Analysis and Soil Plasticity covers the theory and applications of limit analysis as applied to soil mechanics. Organized into 12 chapters, the book presents an introduction to the modern development of theory of soil plasticity and includes rock-like material. The first four chapters of the book describe the technique of limit analysis, beginning with the historical review of the subject and the assumptions on which it is based, and then covering various aspects of available techniques of limit analysis. The subsequent chapters deal with the applications of limit analysis to what may be termed “classical soil mechanics problems that include bearing capacity of footings, lateral earth pressure problems, and stability of slopes. In many cases, comparisons of limit analysis solution and conventional limit equilibrium and slip-like solutions are also presented. Other chapters deal with the advances in bearing-capacity problem of concrete blocks or rock and present theoretical and experimental results of various concrete bearing problems. The concluding chapter examines elastic-plastic soil and elastic-plastic-fracture models for concrete materials. This book is an ideal resource text to geotechnical engineers and soil mechanics researchers.


Limit Analysis in Soil Mechanics

Limit Analysis in Soil Mechanics

Author: W.F. Chen

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 492

ISBN-13: 0444598359

DOWNLOAD EBOOK

During the last ten years, our understanding of the perfect plasticity and the associated flow rule assumption on which limit analysis is based has increased considerably. Many extensions and advances have been made in applications of limit analysis to the area of soil dynamics, in particular, to earthquake-induced slope failure and landslide problems and to earthquake-induced lateral earth pressures on rigid retaining structures. The purpose of the book therefore is in part to discuss the validity of the upper bound work (or energy) method of limit analysis in a form that can be appreciated by a practicing soil engineer, and in part to provide a compact and up-to-date summary of recent advances in the applications of limit analysis to earthquake-induced stability problems in soil mechanics.


Limit Analysis and Concrete Plasticity, Second Edition

Limit Analysis and Concrete Plasticity, Second Edition

Author: M.P. Nielsen

Publisher: CRC Press

Published: 1998-12-29

Total Pages: 944

ISBN-13: 9780849391262

DOWNLOAD EBOOK

Limit Analysis and Concrete Plasticity, Second Edition covers the most relevant topics related to plastic design methods, providing a reliable and superior alternative to existing empirical methods. Fully updated and containing more extensive coverage, this second edition includes numerical methods and computer code for solving problems, incorporating methods into Eurocode 2 - the common concrete standard for the whole of Europe. This edition: Emphasizes practical design, treating almost all the elementary concrete mechanics problems in such a way that the solutions may be directly applied by the designer Details the fundamental problems associated with so-called effectiveness factors Covers many new solutions to specific problems, including concentrated forces, shear walls and deep beams, beams with normal forces and torsional moments, and solutions dealing with membrane effects in slabs Simplifies the treatment of shear in beams and slabs without shear reinforcement or with a modicum of shear reinforcement Extends the chapters on joints and bond strength, showing how plastic theory offers reasonable solutions for most structural problems in reinforced concrete Limit Analysis and Concrete Plasticity explains the basic principles of plasticity theory and its application to the design of reinforced and prestressed concrete structures, providing a thorough understanding of the subject, rather than simply applying current design codes. This scientific understanding of the subject enables the design student or engineer to solve problems more effectively and safely.


Mechanics Of Solids And Structures - Proceedings Of The International Conference

Mechanics Of Solids And Structures - Proceedings Of The International Conference

Author: F W Travis

Publisher: World Scientific

Published: 1991-09-05

Total Pages: 906

ISBN-13: 9814555886

DOWNLOAD EBOOK

This volume of proceedings consists of invited papers on the following and related subject areas: Composite Materials; Experimental Methods in Stress Analysis; Fracture Mechanics; Structural Stability; Non-Linear Behaviour of Materials and Structures; Plasticity; Numerical Methods; Structural Dynamics.


Plasticity in Reinforced Concrete

Plasticity in Reinforced Concrete

Author: Wai-Fah Chen

Publisher: J. Ross Publishing

Published: 2007

Total Pages: 500

ISBN-13: 9781932159745

DOWNLOAD EBOOK

J. Ross Publishing Classics are world-renowned texts and monographs written bt preeminent scholars. These books are available to students, researchers, professionals, and libararies.


Bifurcations, Instabilities and Degradations in Geomaterials

Bifurcations, Instabilities and Degradations in Geomaterials

Author: Richard Wan

Publisher: Springer Science & Business Media

Published: 2011-03-16

Total Pages: 366

ISBN-13: 3642182844

DOWNLOAD EBOOK

Geomaterials exhibit complex but rich mechanical behaviour with a variety of failure modes ranging from diffuse to localized deformation depending on stress, density, microstructure, and loading conditions. These failure modes are a result of an instability of material and/or geometric nature that can be studied within the framework of bifurcation theory. Degradation is another related phenomenon arising from cyclic loading, ageing, weathering, chemical attack, and capillary effects, among others. The methodology of analyzing the various types of instabilities is crucial in the adequate modelling and safe design of numerous problems in geomechanics. The present volume contains a sampling of enlarged versions of papers presented at the International Workshop on Bifurcation and Degradations in Geomaterials (IWBDG 2008) held in Lake Louise, Alberta, Canada, May 28-31, 2008. These papers capture the state-of-the-art in the specialized field of geomechanics and contemporary approaches to solving the central issue of failure. Some engineering applications are presented in the areas of energy resource extraction and soil-machine interaction.