Lie Algebras: Theory and Algorithms

Lie Algebras: Theory and Algorithms

Author: W.A. de Graaf

Publisher: Elsevier

Published: 2000-02-04

Total Pages: 407

ISBN-13: 0080535453

DOWNLOAD EBOOK

The aim of the present work is two-fold. Firstly it aims at a giving an account of many existing algorithms for calculating with finite-dimensional Lie algebras. Secondly, the book provides an introduction into the theory of finite-dimensional Lie algebras. These two subject areas are intimately related. First of all, the algorithmic perspective often invites a different approach to the theoretical material than the one taken in various other monographs (e.g., [42], [48], [77], [86]). Indeed, on various occasions the knowledge of certain algorithms allows us to obtain a straightforward proof of theoretical results (we mention the proof of the Poincaré-Birkhoff-Witt theorem and the proof of Iwasawa's theorem as examples). Also proofs that contain algorithmic constructions are explicitly formulated as algorithms (an example is the isomorphism theorem for semisimple Lie algebras that constructs an isomorphism in case it exists). Secondly, the algorithms can be used to arrive at a better understanding of the theory. Performing the algorithms in concrete examples, calculating with the concepts involved, really brings the theory of life.


Lie Groups, Physics, and Geometry

Lie Groups, Physics, and Geometry

Author: Robert Gilmore

Publisher: Cambridge University Press

Published: 2008-01-17

Total Pages: 5

ISBN-13: 113946907X

DOWNLOAD EBOOK

Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields.


Classification and Identification of Lie Algebras

Classification and Identification of Lie Algebras

Author: Libor Šnobl

Publisher: American Mathematical Soc.

Published: 2014-02-26

Total Pages: 321

ISBN-13: 0821843559

DOWNLOAD EBOOK

The purpose of this book is to serve as a tool for researchers and practitioners who apply Lie algebras and Lie groups to solve problems arising in science and engineering. The authors address the problem of expressing a Lie algebra obtained in some arbitrary basis in a more suitable basis in which all essential features of the Lie algebra are directly visible. This includes algorithms accomplishing decomposition into a direct sum, identification of the radical and the Levi decomposition, and the computation of the nilradical and of the Casimir invariants. Examples are given for each algorithm. For low-dimensional Lie algebras this makes it possible to identify the given Lie algebra completely. The authors provide a representative list of all Lie algebras of dimension less or equal to 6 together with their important properties, including their Casimir invariants. The list is ordered in a way to make identification easy, using only basis independent properties of the Lie algebras. They also describe certain classes of nilpotent and solvable Lie algebras of arbitrary finite dimensions for which complete or partial classification exists and discuss in detail their construction and properties. The book is based on material that was previously dispersed in journal articles, many of them written by one or both of the authors together with their collaborators. The reader of this book should be familiar with Lie algebra theory at an introductory level. Titles in this series are co-published with the Centre de Recherches Mathématiques.


Lie Group Machine Learning

Lie Group Machine Learning

Author: Fanzhang Li

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-11-05

Total Pages: 534

ISBN-13: 3110499509

DOWNLOAD EBOOK

This book explains deep learning concepts and derives semi-supervised learning and nuclear learning frameworks based on cognition mechanism and Lie group theory. Lie group machine learning is a theoretical basis for brain intelligence, Neuromorphic learning (NL), advanced machine learning, and advanced artifi cial intelligence. The book further discusses algorithms and applications in tensor learning, spectrum estimation learning, Finsler geometry learning, Homology boundary learning, and prototype theory. With abundant case studies, this book can be used as a reference book for senior college students and graduate students as well as college teachers and scientific and technical personnel involved in computer science, artifi cial intelligence, machine learning, automation, mathematics, management science, cognitive science, financial management, and data analysis. In addition, this text can be used as the basis for teaching the principles of machine learning. Li Fanzhang is professor at the Soochow University, China. He is director of network security engineering laboratory in Jiangsu Province and is also the director of the Soochow Institute of industrial large data. He published more than 200 papers, 7 academic monographs, and 4 textbooks. Zhang Li is professor at the School of Computer Science and Technology of the Soochow University. She published more than 100 papers in journals and conferences, and holds 23 patents. Zhang Zhao is currently an associate professor at the School of Computer Science and Technology of the Soochow University. He has authored and co-authored more than 60 technical papers.


Lie Algebras

Lie Algebras

Author: Willem A. De Graaf

Publisher:

Published: 2000

Total Pages: 0

ISBN-13: 9780444551740

DOWNLOAD EBOOK

The aim of the present work is two-fold. Firstly it aims at a giving an account of many existing algorithms for calculating with finite-dimensional Lie algebras. Secondly, the book provides an introduction into the theory of finite-dimensional Lie algebras. These two subject areas are intimately related. First of all, the algorithmic perspective often invites a different approach to the theoretical material than the one taken in various other monographs (e.g., [42], [48], [77], [86]). Indeed, on various occasions the knowledge of certain algorithms allows us to obtain a straightforward proof of theoretical results (we mention the proof of the Poincaré-Birkhoff-Witt theorem and the proof of Iwasawa's theorem as examples). Also proofs that contain algorithmic constructions are explicitly formulated as algorithms (an example is the isomorphism theorem for semisimple Lie algebras that constructs an isomorphism in case it exists). Secondly, the algorithms can be used to arrive at a better understanding of the theory. Performing the algorithms in concrete examples, calculating with the concepts involved, really brings the theory of life.


Algorithmic and Combinatorial Algebra

Algorithmic and Combinatorial Algebra

Author: L.A. Bokut'

Publisher: Springer Science & Business Media

Published: 1994-05-31

Total Pages: 406

ISBN-13: 9780792323136

DOWNLOAD EBOOK

Even three decades ago, the words 'combinatorial algebra' contrasting, for in stance, the words 'combinatorial topology,' were not a common designation for some branch of mathematics. The collocation 'combinatorial group theory' seems to ap pear first as the title of the book by A. Karras, W. Magnus, and D. Solitar [182] and, later on, it served as the title of the book by R. C. Lyndon and P. Schupp [247]. Nowadays, specialists do not question the existence of 'combinatorial algebra' as a special algebraic activity. The activity is distinguished not only by its objects of research (that are effectively given to some extent) but also by its methods (ef fective to some extent). To be more exact, we could approximately define the term 'combinatorial algebra' for the purposes of this book, as follows: So we call a part of algebra dealing with groups, semi groups , associative algebras, Lie algebras, and other algebraic systems which are given by generators and defining relations {in the first and particular place, free groups, semigroups, algebras, etc. )j a part in which we study universal constructions, viz. free products, lINN-extensions, etc. j and, finally, a part where specific methods such as the Composition Method (in other words, the Diamond Lemma, see [49]) are applied. Surely, the above explanation is far from covering the full scope of the term (compare the prefaces to the books mentioned above).


Introduction to Lie Algebras

Introduction to Lie Algebras

Author: K. Erdmann

Publisher: Springer Science & Business Media

Published: 2006-09-28

Total Pages: 254

ISBN-13: 1846284902

DOWNLOAD EBOOK

Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. This book provides an elementary introduction to Lie algebras based on a lecture course given to fourth-year undergraduates. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.


Algorithmic Algebra

Algorithmic Algebra

Author: Bhubaneswar Mishra

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 427

ISBN-13: 1461243440

DOWNLOAD EBOOK

Algorithmic Algebra studies some of the main algorithmic tools of computer algebra, covering such topics as Gröbner bases, characteristic sets, resultants and semialgebraic sets. The main purpose of the book is to acquaint advanced undergraduate and graduate students in computer science, engineering and mathematics with the algorithmic ideas in computer algebra so that they could do research in computational algebra or understand the algorithms underlying many popular symbolic computational systems: Mathematica, Maple or Axiom, for instance. Also, researchers in robotics, solid modeling, computational geometry and automated theorem proving community may find it useful as symbolic algebraic techniques have begun to play an important role in these areas. The book, while being self-contained, is written at an advanced level and deals with the subject at an appropriate depth. The book is accessible to computer science students with no previous algebraic training. Some mathematical readers, on the other hand, may find it interesting to see how algorithmic constructions have been used to provide fresh proofs for some classical theorems. The book also contains a large number of exercises with solutions to selected exercises, thus making it ideal as a textbook or for self-study.


Basic Lie Theory

Basic Lie Theory

Author: Hossein Abbaspour

Publisher: World Scientific

Published: 2007

Total Pages: 444

ISBN-13: 9812706984

DOWNLOAD EBOOK

This volume provides a comprehensive treatment of basic Lie theory, primarily directed toward graduate study. The text is ideal for a full graduate course in Lie groups and Lie algebras. However, the book is also very usable for a variety of other courses: a one-semester course in Lie algebras, or on Haar measure and its applications, for advanced undergraduates; or as the text for one-semester graduate courses in Lie groups and symmetric spaces of non-compact type, or in lattices in Lie groups. The material is complete and detailed enough to be used for self-study; it can also serve as a reference work for professional mathematicians working in other areas. The book's utility for such a varied readership is enhanced by a diagram showing the interdependence of the separate chapters so that individual chapters and the material they depend upon can be selected, while others can be skipped.The book incorporates many of the most significant discoveries and pioneering contributions of the masters of the subject: Borel, Cartan, Chevalley, Iwasawa, Mostow, Siegel, and Weyl, among others.