Algebra. Carbondale 1980.
Author: Ralph K. Amayo
Publisher: Springer
Published: 2006-11-15
Total Pages: 305
ISBN-13: 3540385495
DOWNLOAD EBOOKRead and Download eBook Full
Author: Ralph K. Amayo
Publisher: Springer
Published: 2006-11-15
Total Pages: 305
ISBN-13: 3540385495
DOWNLOAD EBOOKAuthor: Jaakko Hintikka
Publisher: Springer Science & Business Media
Published: 2013-03-09
Total Pages: 585
ISBN-13: 9401584788
DOWNLOAD EBOOKDiscussions of the foundations of mathematics and their history are frequently restricted to logical issues in a narrow sense, or else to traditional problems of analytic philosophy. From Dedekind to Gödel: Essays on the Development of the Foundations of Mathematics illustrates the much greater variety of the actual developments in the foundations during the period covered. The viewpoints that serve this purpose included the foundational ideas of working mathematicians, such as Kronecker, Dedekind, Borel and the early Hilbert, and the development of notions like model and modelling, arbitrary function, completeness, and non-Archimedean structures. The philosophers discussed include not only the household names in logic, but also Husserl, Wittgenstein and Ramsey. Needless to say, such logically-oriented thinkers as Frege, Russell and Gödel are not entirely neglected, either. Audience: Everybody interested in the philosophy and/or history of mathematics will find this book interesting, giving frequently novel insights.
Author: Alexander A. Kirillov
Publisher: Cambridge University Press
Published: 2008-07-31
Total Pages: 237
ISBN-13: 0521889693
DOWNLOAD EBOOKThis book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.
Author: K. R. Goodearl
Publisher: American Mathematical Soc.
Published: 2010-05-30
Total Pages: 360
ISBN-13: 0821849808
DOWNLOAD EBOOKA branch of ordered algebraic structures has grown, motivated by $K$-theoretic applications and mainly concerned with partially ordered abelian groups satisfying the Riesz interpolation property. This monograph is the first source in which the algebraic and analytic aspects of these interpolation groups have been integrated into a coherent framework for general reference. The author provides a solid foundation in the structure theory of interpolation groups and dimension groups (directed unperforated interpolation groups), with applications to ordered $K$-theory particularly in mind. Although interpolation groups are defined as purely algebraic structures, their development has been strongly influenced by functional analysis. This cross-cultural development has left interpolation groups somewhat estranged from both the algebraists, who may feel intimidated by compact convex sets, and the functional analysts, who may feel handicapped by the lack of scalars. This book, requiring only standard first-year graduate courses in algebra and functional analysis, aims to make the subject accessible to readers from both disciplines.High points of the development include the following: characterization of dimension groups as direct limits of finite products of copies of the integers; the double-dual representation of an interpolation group with order-unit via affine continuous real-valued functions on its state space; the structure of dimension groups complete with respect to the order-unit norm, as well as monotone sigma-complete dimension groups and dimension groups with countably infinite interpolation; and an introduction to the problem of classifying extensions of one dimension group by another. The book also includes a development of portions of the theory of compact convex sets and Choquet simplices, and an expository discussion of various applications of interpolation group theory to rings and $C DEGREES*$-algebras via ordered $K_0$. A discussion of some open problems in interpolation groups and dimension groups concludes the book.Of interest, of course, to researchers in ordered algebraic structures, the book will also be a valuable source for researchers seeking a background in interpolation groups and dimension groups for applications to such subjects as rings, operator algebras, topological Markov chains, positive polynomials, compact group actions, or other areas where ordered Grothendieck groups might be useful. This is a reprint of the 1986 original. (SUR
Author: W. B. Powell
Publisher: CRC Press
Published: 1985-10-01
Total Pages: 220
ISBN-13: 9780824773427
DOWNLOAD EBOOKThe papers contained in this volume constitute the proceedings of the Special Session on Ordered Algebraic Structures which was held at the 1982 annual meeting of the American Mathematical Society in Cincinnati, Ohio. The Special Session and this volume honor Paul Conrad, whose work on the subject is noted for its depth and originality. These papers address many areas within the subject of ordered algebraic structures, including varieties, free algebras, lattice ordered groups, subgroups of ordered groups, semigroups, ordered rings, and topological properties of these structures.
Author: Marcelo Aguiar
Publisher: American Mathematical Soc.
Published: 2017-11-22
Total Pages: 639
ISBN-13: 1470437112
DOWNLOAD EBOOKThis monograph studies the interplay between various algebraic, geometric and combinatorial aspects of real hyperplane arrangements. It provides a careful, organized and unified treatment of several recent developments in the field, and brings forth many new ideas and results. It has two parts, each divided into eight chapters, and five appendices with background material. Part I gives a detailed discussion on faces, flats, chambers, cones, gallery intervals, lunes and other geometric notions associated with arrangements. The Tits monoid plays a central role. Another important object is the category of lunes which generalizes the classical associative operad. Also discussed are the descent and lune identities, distance functions on chambers, and the combinatorics of the braid arrangement and related examples. Part II studies the structure and representation theory of the Tits algebra of an arrangement. It gives a detailed analysis of idempotents and Peirce decompositions, and connects them to the classical theory of Eulerian idempotents. It introduces the space of Lie elements of an arrangement which generalizes the classical Lie operad. This space is the last nonzero power of the radical of the Tits algebra. It is also the socle of the left ideal of chambers and of the right ideal of Zie elements. Zie elements generalize the classical Lie idempotents. They include Dynkin elements associated to generic half-spaces which generalize the classical Dynkin idempotent. Another important object is the lune-incidence algebra which marks the beginning of noncommutative Möbius theory. These ideas are also brought upon the study of the Solomon descent algebra. The monograph is written with clarity and in sufficient detail to make it accessible to graduate students. It can also serve as a useful reference to experts.
Author: Jean-pierre Tignol
Publisher: World Scientific Publishing Company
Published: 2015-12-28
Total Pages: 325
ISBN-13: 9814704717
DOWNLOAD EBOOKThe book gives a detailed account of the development of the theory of algebraic equations, from its origins in ancient times to its completion by Galois in the nineteenth century. The appropriate parts of works by Cardano, Lagrange, Vandermonde, Gauss, Abel, and Galois are reviewed and placed in their historical perspective, with the aim of conveying to the reader a sense of the way in which the theory of algebraic equations has evolved and has led to such basic mathematical notions as 'group' and 'field'. A brief discussion of the fundamental theorems of modern Galois theory and complete proofs of the quoted results are provided, and the material is organized in such a way that the more technical details can be skipped by readers who are interested primarily in a broad survey of the theory.In this second edition, the exposition has been improved throughout and the chapter on Galois has been entirely rewritten to better reflect Galois' highly innovative contributions. The text now follows more closely Galois' memoir, resorting as sparsely as possible to anachronistic modern notions such as field extensions. The emerging picture is a surprisingly elementary approach to the solvability of equations by radicals, and yet is unexpectedly close to some of the most recent methods of Galois theory.
Author: Robert Gilmore
Publisher: Cambridge University Press
Published: 2008-01-17
Total Pages: 5
ISBN-13: 113946907X
DOWNLOAD EBOOKDescribing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields.
Author: Arkadij L. Onishchik
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 347
ISBN-13: 364274334X
DOWNLOAD EBOOKThis book is based on the notes of the authors' seminar on algebraic and Lie groups held at the Department of Mechanics and Mathematics of Moscow University in 1967/68. Our guiding idea was to present in the most economic way the theory of semisimple Lie groups on the basis of the theory of algebraic groups. Our main sources were A. Borel's paper [34], C. ChevalIey's seminar [14], seminar "Sophus Lie" [15] and monographs by C. Chevalley [4], N. Jacobson [9] and J-P. Serre [16, 17]. In preparing this book we have completely rearranged these notes and added two new chapters: "Lie groups" and "Real semisimple Lie groups". Several traditional topics of Lie algebra theory, however, are left entirely disregarded, e.g. universal enveloping algebras, characters of linear representations and (co)homology of Lie algebras. A distinctive feature of this book is that almost all the material is presented as a sequence of problems, as it had been in the first draft of the seminar's notes. We believe that solving these problems may help the reader to feel the seminar's atmosphere and master the theory. Nevertheless, all the non-trivial ideas, and sometimes solutions, are contained in hints given at the end of each section. The proofs of certain theorems, which we consider more difficult, are given directly in the main text. The book also contains exercises, the majority of which are an essential complement to the main contents.
Author: V.M. Kopytov
Publisher: Springer Science & Business Media
Published: 1994-10-31
Total Pages: 426
ISBN-13: 9780792331698
DOWNLOAD EBOOKA partially ordered group is an algebraic object having the structure of a group and the structure of a partially ordered set which are connected in some natural way. These connections were established in the period between the end of 19th and beginning of 20th century. It was realized that ordered algebraic systems occur in various branches of mathemat ics bound up with its fundamentals. For example, the classification of infinitesimals resulted in discovery of non-archimedean ordered al gebraic systems, the formalization of the notion of real number led to the definition of ordered groups and ordered fields, the construc tion of non-archimedean geometries brought about the investigation of non-archimedean ordered groups and fields. The theory of partially ordered groups was developed by: R. Dedekind, a. Holder, D. Gilbert, B. Neumann, A. I. Mal'cev, P. Hall, G. Birkhoff. These connections between partial order and group operations allow us to investigate the properties of partially ordered groups. For exam ple, partially ordered groups with interpolation property were intro duced in F. Riesz's fundamental paper [1] as a key to his investigations of partially ordered real vector spaces, and the study of ordered vector spaces with interpolation properties were continued by many functional analysts since. The deepest and most developed part of the theory of partially ordered groups is the theory of lattice-ordered groups. In the 40s, following the publications of the works by G. Birkhoff, H. Nakano and P.