Algebraic Analysis of Solvable Lattice Models

Algebraic Analysis of Solvable Lattice Models

Author: Michio Jimbo

Publisher: American Mathematical Soc.

Published: 1995

Total Pages: 180

ISBN-13: 0821803204

DOWNLOAD EBOOK

Based on the NSF-CBMS Regional Conference lectures presented by Miwa in June 1993, this book surveys recent developments in the interplay between solvable lattice models in statistical mechanics and representation theory of quantum affine algebras. Because results in this subject were scattered in the literature, this book fills the need for a systematic account, focusing attention on fundamentals without assuming prior knowledge about lattice models or representation theory. After a brief account of basic principles in statistical mechanics, the authors discuss the standard subjects concerning solvable lattice models in statistical mechanics, the main examples being the spin 1/2 XXZ chain and the six-vertex model. The book goes on to introduce the main objects of study, the corner transfer matrices and the vertex operators, and discusses some of their aspects from the viewpoint of physics. Once the physical motivations are in place, the authors return to the mathematics, covering the Frenkel-Jing bosonization of a certain module, formulas for the vertex operators using bosons, the role of representation theory, and correlation functions and form factors. The limit of the XXX model is briefly discussed, and the book closes with a discussion of other types of models and related works.


Exactly Solved Models

Exactly Solved Models

Author: Fa Yueh Wu

Publisher: World Scientific

Published: 2009

Total Pages: 661

ISBN-13: 9812813896

DOWNLOAD EBOOK

This unique volume provides a comprehensive overview of exactly solved models in statistical mechanics by looking at the scientific achievements of F Y Wu in this and related fields, which span four decades of his career. The book is organized into topics ranging from lattice models in condensed matter physics to graph theory in mathematics, and includes the author's pioneering contributions. Through insightful commentaries, the author presents an overview of each of the topics and an insider's look at how crucial developments emerged. With the inclusion of important pedagogical review articles by the author, Exactly Solved Models is an indispensable learning tool for graduate students, and an essential reference and source book for researchers in physics and mathematics as well as historians of science.


Yang-Baxter Equation in Integrable Systems

Yang-Baxter Equation in Integrable Systems

Author: Michio Jimbo

Publisher: World Scientific

Published: 1990

Total Pages: 740

ISBN-13: 9789810201203

DOWNLOAD EBOOK

This volume will be the first reference book devoted specially to the Yang-Baxter equation. The subject relates to broad areas including solvable models in statistical mechanics, factorized S matrices, quantum inverse scattering method, quantum groups, knot theory and conformal field theory. The articles assembled here cover major works from the pioneering papers to classical Yang-Baxter equation, its quantization, variety of solutions, constructions and recent generalizations to higher genus solutions.


Conformal Field Theory and Solvable Lattice Models

Conformal Field Theory and Solvable Lattice Models

Author: M Jimbo

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 439

ISBN-13: 0323150357

DOWNLOAD EBOOK

Advanced Studies in Pure Mathematics, 16: Conformal Field Theory and Solvable Lattice Models contains nine papers based on the symposium "Conformal field theory and solvable lattice models" held at RIMS, Kyoto, May 1986. These papers cover the following active areas in mathematical physics: conformal field theory, solvable lattice models, affine and Virasoro algebra, and KP equations. The volume begins with an analysis of 1 and 2 point correlation functions of the Gibbs measure of random matrices. This is followed by separate chapters on solvable solid-on-solid (SOS) models; lectures on conformal field theory; the construction of Fermion variables for the 3D Ising Model; and vertex operator construction of null fields (singular vertex operators) based on the oscillator representation of conformal and superconformal algebras with central charge extention. Subsequent chapters deal with Hecke algebra representations of braid groups and classical Yang-Baxter equations; the relationship between the conformal field theories and the soliton equations (KdV, MKdV and Sine-Gordon, etc.) at both quantum and classical levels; and a supersymmetric extension of the Kadomtsev-Petviashvili hierarchy.


Perspectives On Solvable Models

Perspectives On Solvable Models

Author: Michael Baake

Publisher: World Scientific

Published: 1995-01-23

Total Pages: 311

ISBN-13: 9814501042

DOWNLOAD EBOOK

This volume consists of a collection of recent research articles dedicated to Vladimir Rittenberg on the occasion of his 60th birthday. Various aspects of solvable models in different areas of theoretical and mathematical physics are covered. Particular topics include diffusion, self-organized criticality, classical and quantum spin chains, two-dimensional lattice models, quantum algebras, and conformal field theory. The list of contributing authors contains altogether 34 names, including among others, Baxter, Cardy, Itzykson, Martin, McCoy, Nahm, Pearce and de Vega.


Algebraic Analysis

Algebraic Analysis

Author: Masaki Kashiwara

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 495

ISBN-13: 1483268020

DOWNLOAD EBOOK

Algebraic Analysis: Papers Dedicated to Professor Mikio Sato on the Occasion of his 60th Birthday, Volume I is a collection of research papers on algebraic analysis and related topics in honor to Professor Mikio Sato's 60th birthday. This volume is composed of 35 chapters and begins with papers concerning Sato's early career in algebraic analysis. The succeeding chapters deal with research works on the existence of local holomorphic solutions, the holonomic q-difference systems, partial differential equations, and the properties of solvable models. Other chapters explore the fundamentals of hypergeometric functions, the Toda lattice in the complex domain, the Lie algebras, b-functions, p-adic integrals, analytic parameters of hyperfunctions, and some applicatioins of microlocal energy methods to analytic hypoeellipticity. This volume also presents studies on the complex powers of p-adic fields, operational calculus, extensions of microfunction sheaves up to the boundary, and the irregularity of holonomic modules. The last chapters feature research works on error analysis of quadrature formulas obtained by variable transformation and the analytic functional on the complex light cone, as well as their Fourier-Borel transformations. This book will prove useful to mathematicians and advance mathematics students.