"This publication provides a comprehensive summary of experiences and results collected at a series of technical meetings of Member States currently operating CANDU-type nuclear power plants. Special emphasis is placed on supporting future harmonization in the regulatory framework, level 1 PSA methodologies and tools and level 1 PSA scope. In addition, information is shared on actions undertaken in response to lessons learned from the Fukushima Daiichi accident."--Publisher's description.
The objective of this Safety Guide is to provide recommendations for meeting the IAEA safety requirements in performing or managing a level 2 probabilistic safety assessment (PSA) project for a nuclear power plant; thus it complements the Safety Guide on level 1 PSA. One of the aims of this Safety Guide is to promote a standard framework, standard terms and a standard set of documents for level 2 PSAs to facilitate regulatory and external peer review of their results. It describes all elements of the level 2 PSA that need to be carried out if the starting point is a fully comprehensive level 1 PSA. Contents: 1. Introduction; 2. PSA project management and organization; 3. Identification of design aspects important to severe accidents and acquisition of information; 4. Interface with level 1 PSA: Grouping of sequences; 5. Accident progression and containment analysis; 6. Source terms for severe accidents; 7. Documentation of the analysis: Presentation and interpretation of results; 8. Use and applications of the PSA; References; Annex I: Example of a typical schedule for a level 2 PSA; Annex II: Computer codes for simulation of severe accidents; Annex III: Sample outline of documentation for a level 2 PSA study.
The present report is a revision of Safety Series No. 75-INSAG-3 (1988), updating the statements made on the objectives and principles of safe design and operation for electricity generating nuclear power plants. It includes the improvements made in the safety of operating nuclear power plants and identifies the principles underlying the best current safety policies to be applied in future plants. It presents INSAG's understanding of the principles underlying the best current safety policies and practices of the nuclear power industry.
This safety report publication provides specific guidance on the management of project risks in decommissioning. The publication proposes a systematic and pro-active approach on how to identify, analyse, evaluate, and treat relevant project risks at strategic and operational levels, and provides examples of application of the proposed approach
Describes international approaches for maintaining fuel subcritical, removing residual heat, providing radiation protection and containing radioactive materials for the lifetime of a facility. It is intended to provide details on the safety assessment of interim spent fuel storage facilities that are not an integral part of an operating plant.
Deterministic safety analysis is an essential component of safety assessment, particularly for safety demonstration of the design of nuclear power plants (NPPs). The objective of deterministic safety analysis is to confirm that safety functions can be fulfilled and that the necessary structures, systems and components, in combination with operator actions, are effective in keeping the releases of radioactive material from the plant below acceptable limits. Deterministic safety analysis, supplemented by further specific information and analysis, including probabilistic safety analysis, is also intended to demonstrate that the source term and the potential radiological consequences of different plant states are acceptable, and that the possibility of certain conditions arising that could lead to an early or a large radioactive release can be considered as 'practically eliminated'. The publication has been updated to maintain consistency with current IAEA safety requirements and to reflect lessons from the Fukushima Daiichi accident. It takes into account current practices and experience from deterministic safety analyses for NPPs being performed around the world.
"This Safety Guide provides guidance on the establishment of a national nuclear safety infrastructure as a key component of the overall preparations required for emerging nuclear power programmes. It provides recommendations, presented in the form of 200 sequential actions, on meeting the applicable IAEA safety requirements during the first three phases of the development of a nuclear power programme. It is intended for use by persons or organizations participating in the preparation and implementation of a nuclear power programme, including government officials and legislative bodies, regulatory bodies, operating organizations and external support entities."--Provided by publisher.
This TECDOC deals with a basic concept of safety margins and their role in assuring safety of nuclear Installations. The document describes capabilities of thermal hydraulic computer codes used to determine safety margins, evaluation of uncertainties, methods for safety margin evaluation and utilization of safety margins in operation and modifications of nuclear power plants.
The objective of this Safety Guide is to provide recommendations for meeting the requirements of GSR Part 4 (Rev. 1) in the development and application of Level 1 Probabilistic Safety Assessments (PSAs) for nuclear power plants (NPPs). The recommendations provided in this publication promoting technical consistency among Level 1 PSA studies, in order to provide reliable support for applications of PSAs and risk informed decision making, particularly to support the design of NPPs and decision making during plant commissioning and operation. The revised Safety Guide's scope encompasses the main methodological aspects of PSA and in particular has been updated to reflect developments in specific areas, such as passive systems reliability, computer based systems reliability, combinations of hazards, human reliability analysis and to expand the scope of PSA to include site level risk considerations such as multi-unit and spent fuel pool PSA.