Lectures on Quantum Computing, Thermodynamics and Statistical Physics

Lectures on Quantum Computing, Thermodynamics and Statistical Physics

Author: Mikio Nakahara

Publisher: World Scientific

Published: 2013

Total Pages: 199

ISBN-13: 9814425192

DOWNLOAD EBOOK

This book is a collection of lecture notes from the Symposium on Quantum Computing, Thermodynamics, and Statistical Physics, held at Kinki University in March 2012. Quantum information theory has a deep connection with statistical physics and thermodynamics. This volume introduces some of the topics on interface among the mentioned fields. Subjects included in the lecture notes include quantum annealing method, nonequilibrium thermodynamics and spin glass theory, among others. These subjects were presented with much emphasis put in its relevance in quantum information theory. These lecture notes are prepared in a self-contained manner so that a reader with modest background may understand the subjects.


Interface Between Quantum Information and Statistical Physics

Interface Between Quantum Information and Statistical Physics

Author: Mikio Nakahara

Publisher: World Scientific

Published: 2013

Total Pages: 278

ISBN-13: 9814425281

DOWNLOAD EBOOK

This book is a collection of contributions to the Symposium on Interface between Quantum Information and Statistical Physics held at Kinki University in November 2011. Subjects of the symposium include quantum adiabatic computing, quantum simulator using bosons, classical statistical physics, among others. Contributions to this book are prepared in a self-contained manner so that a reader with a modest background may understand the subjects.


Quantum Information and Quantum Computing

Quantum Information and Quantum Computing

Author: Mikio Nakahara

Publisher: World Scientific

Published: 2013

Total Pages: 194

ISBN-13: 9814425222

DOWNLOAD EBOOK

The open research center project "Interdisciplinary fundamental research toward realization of a quantum computer" has been supported by the Ministry of Education, Japan for five years. This is a collection of the research outcomes by the members engaged in the project. To make the presentation self-contained, it starts with an overview by Mikio Nakahara, which serves as a concise introduction to quantum information and quantum computing. Subsequent contributions include subjects from physics, chemistry, mathematics, and information science, reflecting upon the wide variety of scientists working under this project. These contributions introduce NMR quantum computing and related techniques, number theory and coding theory, quantum error correction, photosynthesis, non-classical correlations and entanglement, neutral atom quantum computer, among others. Each of the contributions will serve as a short introduction to these cutting edge research fields.


Thermodynamics of Information Processing in Small Systems

Thermodynamics of Information Processing in Small Systems

Author: Takahiro Sagawa

Publisher: Springer Science & Business Media

Published: 2012-09-14

Total Pages: 126

ISBN-13: 4431541683

DOWNLOAD EBOOK

This thesis presents a general theory of nonequilibrium thermodynamics for information processing. Ever since Maxwell's demon was proposed in the nineteenth century, the relationship between thermodynamics and information has attracted much attention because it concerns the foundation of the second law of thermodynamics. From the modern point of view, Maxwell's demon is formulated as an information processing device that performs measurement and feedback at the level of thermal fluctuations. By unifying information theory, measurement theory, and the recently developed theory of nonequilibrium statistical mechanics, the author has constructed a theory of "information thermodynamics," in which information contents and thermodynamic variables are treated on an equal footing. In particular, the maximum work that can be extracted by the demon and the minimum work that is needed for measurement and information erasure by the demon has been determined. Additionally, generalizations of nonequilibrium relations such as a Jarzynski equality for classical stochastic systems in the presence of feedback control have been derived. One of the generalized equalities has recently been verified experimentally by using sub-micron colloidal particles. The results obtained serve as fundamental principles for information processing in small thermodynamic systems, and are applicable to nanomachines and nanodevices.


Entropy, Divergence, and Majorization in Classical and Quantum Thermodynamics

Entropy, Divergence, and Majorization in Classical and Quantum Thermodynamics

Author: Takahiro Sagawa

Publisher: Springer Nature

Published: 2022-03-23

Total Pages: 150

ISBN-13: 981166644X

DOWNLOAD EBOOK

Rich information-theoretic structure in out-of-equilibrium thermodynamics exists in both the classical and quantum regimes, leading to the fruitful interplay among statistical physics, quantum information theory, and mathematical theories such as matrix analysis and asymptotic probability theory. The main purpose of this book is to clarify how information theory works behind thermodynamics and to shed modern light on it. The book focuses on both purely information-theoretic concepts and their physical implications. From the mathematical point of view, rigorous proofs of fundamental properties of entropies, divergences, and majorization are presented in a self-contained manner. From the physics perspective, modern formulations of thermodynamics are discussed, with a focus on stochastic thermodynamics and resource theory of thermodynamics. In particular, resource theory is a recently developed field as a branch of quantum information theory to quantify “useful resources” and has an intrinsic connection to various fundamental ideas of mathematics and information theory. This book serves as a concise introduction to important ingredients of the information-theoretic formulation of thermodynamics.


Diversities in Quantum Computation and Quantum Information

Diversities in Quantum Computation and Quantum Information

Author: Mikio Nakahara

Publisher: World Scientific

Published: 2013

Total Pages: 228

ISBN-13: 9814425982

DOWNLOAD EBOOK

This book is a collection of lecture notes and contributions in "Summer School on Diversities in Quantum Computation/Information" held on 1-5 August, 2010 at U-Community Hotel, Higashi-Osaka, Japan. Lecturers are world class authorities in respective areas in quantum information and quantum computing including physics, mathematics, chemistry and information science. They lectured on cutting-edge research frontiers where they are currently working, including quantum error correction, relativistic quantum information, quantum computing of link polynomials, quantum algorithms, etc. Each lecture note is written in a self-contained manner so that it may be used as a textbook for one semester graduate course or advanced undergraduate course. Contributions report current research subjects also in a self-contained manner. We believe that these articles are accessible to the readers form various disciplines.


Quantum Computing Since Democritus

Quantum Computing Since Democritus

Author: Scott Aaronson

Publisher: Cambridge University Press

Published: 2013-03-14

Total Pages: 403

ISBN-13: 0521199565

DOWNLOAD EBOOK

Takes students and researchers on a tour through some of the deepest ideas of maths, computer science and physics.


Quantum Spin Glasses, Annealing and Computation

Quantum Spin Glasses, Annealing and Computation

Author: Shu Tanaka

Publisher: Cambridge University Press

Published: 2017-05-04

Total Pages: 423

ISBN-13: 1107113199

DOWNLOAD EBOOK

"Discusses the recent developments in quantum statistical physics of spin glasses and quantum computations"--Provided by publisher.


Physics, Mathematics, And All That Quantum Jazz

Physics, Mathematics, And All That Quantum Jazz

Author: Shu Tanaka

Publisher: World Scientific

Published: 2014-04-01

Total Pages: 290

ISBN-13: 9814602388

DOWNLOAD EBOOK

This book is a collection of contributions from a Summer Workshop on “Physics, Mathematics, and All That Quantum Jazz”. Subjects of the symposium include quantum information theory, quantum annealing, Bose gases, and thermodynamics from a viewpoint of quantum physics. Contributions to this book are prepared in a self-contained manner so that readers with a modest background may understand the subjects.


Feynman Lectures On Computation

Feynman Lectures On Computation

Author: Richard P. Feynman

Publisher: CRC Press

Published: 2018-07-03

Total Pages: 252

ISBN-13: 0429980078

DOWNLOAD EBOOK

When, in 1984?86, Richard P. Feynman gave his famous course on computation at the California Institute of Technology, he asked Tony Hey to adapt his lecture notes into a book. Although led by Feynman, the course also featured, as occasional guest speakers, some of the most brilliant men in science at that time, including Marvin Minsky, Charles Bennett, and John Hopfield. Although the lectures are now thirteen years old, most of the material is timeless and presents a ?Feynmanesque? overview of many standard and some not-so-standard topics in computer science such as reversible logic gates and quantum computers.