Lectures on Quantum Chromodynamics

Lectures on Quantum Chromodynamics

Author: A. V. Smilga

Publisher: World Scientific

Published: 2001

Total Pages: 360

ISBN-13: 9789812810595

DOWNLOAD EBOOK

Quantum chromodynamics is the fundamental theory of strong interactions. It is a physical theory describing Nature. Lectures on Quantum Chromodynamics concentrates, however, not on the phenomenological aspect of QCD; books with comprehensive coverage of phenomenological issues have been written. What the reader will find in this book is a profound discussion on the theoretical foundations of QCD with emphasis on the nonperturbative formulation of the theory: What is gauge symmetry on the classical and on the quantum level? What is the path integral in field theory? How to define the path integral on the lattice, keeping intact as many symmetries of the continuum theory as possible? What is the QCD vacuum state? What is the effective low energy dynamics of QCD? How do the ITEP sum rules work? What happens if we heat and/or squeeze hadronic matter? Perturbative issues are also discussed: How to calculate Feynman graphs? What is the BRST symmetry? What is the meaning of the renormalization procedure? How to resum infrared and collinear singularities? And so on. The book is an outgrowth of the course of lectures given by the author for graduate students at ITEP in Moscow. Much extra material has been added. Sample Chapter(s). Introduction: Some History (331 KB). Lecture 1.1: Path Ordered Exponentials. Invariant Actions (624 KB). Lecture 1.2: Classical Solutions (266 KB). Lecture 2.1: Topological Charge (329 KB). Lecture 2.2: Explicit Solutions (338 KB). Lecture 3.1: Conventional Approach (330 KB). Lecture 3.2: Euclidean Path Integral (150 KB). Lecture 3.3: Holomorphic Representation (177 KB). Lecture 3.4: Grassmann Dynamic Variables (340 KB). Lecture 4.1: Dirac Quantization Procedure 782 KB). Lecture 4.2: Path Integral on the Lattice (330 KB). Lecture 5.1: Quantum Pendulum (534 KB). Lecture 5.2: Large Gauge Transformations in Non-Abelian Theory (395 KB). Contents: Foundations: YangOCoMills Field; Instantons; Path Integral in Quantum Mechanics; Quantization of Gauge Theories; Perturbation Theory: Diagram Technique in Simple and Complicated Theories; When the Gauge is Fixed OC Regularization and Renormalization; Running Coupling Constant; Weathering Infrared Storms; Collinear Singularities: Theory and Phenomenology; Nonperturbative QCD: Symmetries: Anomalous and Not; Quarks on Euclidean Lattice; Aspects of Chiral Symmetry; Mesoscopic QCD; Fairy QCD; ITEP Sum Rules: The Duality Festival; Hot and Dense QCD; Confinement. Readership: High energy physicists and advanced level graduate students in high energy physics."


Lectures On Qed And Qcd: Practical Calculation And Renormalization Of One- And Multi-loop Feynman Diagrams

Lectures On Qed And Qcd: Practical Calculation And Renormalization Of One- And Multi-loop Feynman Diagrams

Author: Andrey Grozin

Publisher: World Scientific

Published: 2007-01-23

Total Pages: 239

ISBN-13: 981447732X

DOWNLOAD EBOOK

The increasing precision of experimental data in many areas of elementary particle physics requires an equally precise theoretical description. In particular, radiative corrections (described by one- and multi-loop Feynman diagrams) have to be considered. Although a growing number of physicists are involved in such projects, multi-loop calculation methods can only be studied from original publications. With its coverage of multi-loop calculations, this book serves as an excellent supplement to the standard textbooks on quantum field theory. Based around postgraduate-level lectures given by the author, the material is suitable for both beginners and graduate students.


Quantum Chromodynamics on the Lattice

Quantum Chromodynamics on the Lattice

Author: Christof Gattringer

Publisher: Springer

Published: 2009-10-03

Total Pages: 352

ISBN-13: 3642018505

DOWNLOAD EBOOK

This introduction to quantum chromodynamics presents the basic concepts and calculations in a clear and didactic style accessible to those new to the field. Readers will find useful methods for obtaining numerical results, including pure gauge theory and quenched spectroscopy.


The Physics of the Quark-Gluon Plasma

The Physics of the Quark-Gluon Plasma

Author: Sourav Sarkar

Publisher: Springer Science & Business Media

Published: 2009-12-16

Total Pages: 374

ISBN-13: 3642022855

DOWNLOAD EBOOK

The aim of this book is to offer to the next generation of young researchers a broad and largely self-contained introduction to the physics of heavy ion collisions and the quark-gluon plasma, providing material beyond that normally found in the available textbooks. For each of the main aspects - QCD thermodynamics and global features of the QGP, collision hydrodynamics, electromagnetic probes, jet and quarkonium production, color glass condensate, and the gravity connection - the present volume provides extensive and pedagogical lectures, surveying the present status of both theory and experiment. A particular feature of this volume is that all lectures have been written with the active assistance of selected students present at the course in order to ensure the adequate level and coverage for the intended readership.


The Black Book of Quantum Chromodynamics

The Black Book of Quantum Chromodynamics

Author: John Campbell

Publisher: Oxford University Press

Published: 2018

Total Pages: 760

ISBN-13: 0199652740

DOWNLOAD EBOOK

This title provides an in-depth introduction to the particle physics of current and future experiments at particle accelerators. The text provides the reader with an overview of practically all aspects of the strong interaction necessary to understand and appreciate modern particle phenomenology at the energy frontier.


Lattice QCD for Nuclear Physics

Lattice QCD for Nuclear Physics

Author: Huey-Wen Lin

Publisher: Springer

Published: 2014-11-21

Total Pages: 255

ISBN-13: 3319080229

DOWNLOAD EBOOK

With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems and in particular to nuclear physics. A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spectroscopy and structure, many-body systems, together with more topical lectures in nuclear physics aimed a providing a broad phenomenological background. Exercises to encourage hands-on experience with parallel computing and data analysis are included.


QCD and Collider Physics

QCD and Collider Physics

Author: R. K. Ellis

Publisher: Cambridge University Press

Published: 2003-12-04

Total Pages: 462

ISBN-13: 9780521545891

DOWNLOAD EBOOK

A detailed overview of the physics of high-energy colliders emphasising the role of QCD.


Lectures on QCD

Lectures on QCD

Author: Frieder Lenz

Publisher: Springer

Published: 1997-10-15

Total Pages: 763

ISBN-13: 9783540634423

DOWNLOAD EBOOK

The two-volume set Lectures on QCD provides an introductory overview of Quantum Chromodynamics, the theory of strong interactions. In a series of pedagogically written articles based on lectures given over the years to graduate students, the fundamentals of QCD are discussed and significant application areas are described. The field-theoretic basis of QCD is the focus of the first volume, while the application of QCD to the phenomenology of strong interactions forms the subject of the second volume.