The initial sections of this text deal with syntactical matters such as logical formalism, cut-elimination, and the embedding of intuitionistic logic in classical linear logic. Concluding chapters focus on proofnets for the multiplicative fragment and the algorithmic interpretation of cut-elimination in proofnets.
"Suitable for advanced undergraduates and graduate students, this text introduces basic concepts of linear algebra. Each chapter contains an introduction, definitions, and propositions, in addition to multiple examples, lemmas, theorems, corollaries, andproofs. Each chapter features numerous supplemental exercises, and solutions to selected problems appear at the end. 1988 edition"--
This is the first of two volumes comprising the papers submitted for publication by the invited participants to the Tenth International Congress of Logic, Methodology and Philosophy of Science, held in Florence, August 1995. The Congress was held under the auspices of the International Union of History and Philosophy of Science, Division of Logic, Methodology and Philosophy of Science. The invited lectures published in the two volumes demonstrate much of what goes on in the fields of the Congress and give the state of the art of current research. The two volumes cover the traditional subdisciplines of mathematical logic and philosophical logic, as well as their interfaces with computer science, linguistics and philosophy. Philosophy of science is broadly represented, too, including general issues of natural sciences, social sciences and humanities. The papers in Volume One are concerned with logic, mathematical logic, the philosophy of logic and mathematics, and computer science.
"A First Course in Linear Algebra, originally by K. Kuttler, has been redesigned by the Lyryx editorial team as a first course for the general students who have an understanding of basic high school algebra and intend to be users of linear algebra methods in their profession, from business & economics to science students. All major topics of linear algebra are available in detail, as well as justifications of important results. In addition, connections to topics covered in advanced courses are introduced. The textbook is designed in a modular fashion to maximize flexibility and facilitate adaptation to a given course outline and student profile. Each chapter begins with a list of student learning outcomes, and examples and diagrams are given throughout the text to reinforce ideas and provide guidance on how to approach various problems. Suggested exercises are included at the end of each section, with selected answers at the end of the textbook."--BCcampus website.
Temporal logic has developed over the last 30 years into a powerful formal setting for the specification and verification of state-based systems. Based on university lectures given by the authors, this book is a comprehensive, concise, uniform, up-to-date presentation of the theory and applications of linear and branching time temporal logic; TLA (Temporal Logic of Actions); automata theoretical connections; model checking; and related theories. All theoretical details and numerous application examples are elaborated carefully and with full formal rigor, and the book will serve as a basic source and reference for lecturers, graduate students and researchers.
The European Summer School in Logic, Language and Information (ESSLLI) is organized every year by the Association for Logic, Language and Information (FoLLI) in different sites around Europe. The main focus of ESSLLI is on the interface between linguistics, logic and computation. ESSLLI offers foundational, introductory and advanced courses, as well as workshops, covering a wide variety of topics within the three areas of interest: Language and Computation, Language and Logic, and Logic and Computation. During two weeks, around 50 courses and 10 workshops are offered to the attendants, each of 1.5 hours per day during a five days week, with up to seven parallel sessions. ESSLLI also includes a student session (papers and posters by students only, 1.5 hour per day during the two weeks) and four evening lectures by senior scientists in the covered areas. The 6 course notes were carefully reviewed and selected. The papers are organized in topical sections on computational complexity, multi-agant systems, natural language processing, strategies in games and formal semantics.
This volume is the proceedings of the Ninth International Conference on the Mathematical Foundations of Programming Semantics, held in New Orleans in April 1993. The focus of the conference series is the semantics of programming languages and the mathematics which supports the study of the semantics. The semantics is basically denotation. The mathematics may be classified as category theory, lattice theory, or logic. Recent conferences and workshops have increasingly emphasized applications of the semantics and mathematics. The study of the semantics develops with the mathematics and the mathematics is inspired by the applications in semantics. The volume presents current research in denotational semantics and applications of category theory, logic, and lattice theory to semantics.
This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.