Lectures on Generating Functions

Lectures on Generating Functions

Author: Sergei K. Lando

Publisher: American Mathematical Soc.

Published: 2003-10-21

Total Pages: 170

ISBN-13: 0821834819

DOWNLOAD EBOOK

In combinatorics, one often considers the process of enumerating objects of a certain nature, which results in a sequence of positive integers. With each such sequence, one can associate a generating function, whose properties tell us a lot about the nature of the objects being enumerated. Nowadays, the language of generating functions is the main language of enumerative combinatorics. This book is based on the course given by the author at the College of Mathematics of the Independent University of Moscow. It starts with definitions, simple properties, and numerous examples of generating functions. It then discusses various topics, such as formal grammars, generating functions in several variables, partitions and decompositions, and the exclusion-inclusion principle. In the final chapter, the author describes applications of generating functions to enumeration of trees, plane graphs, and graphs embedded in two-dimensional surfaces. Throughout the book, the reader is motivated by interesting examples rather than by general theories. It also contains a lot of exercises to help the reader master the material. Little beyond the standard calculus course is necessary to understand the book. It can serve as a text for a one-semester undergraduate course in combinatorics.


Generatingfunctionology

Generatingfunctionology

Author: Herbert S. Wilf

Publisher: Elsevier

Published: 2014-05-10

Total Pages: 193

ISBN-13: 1483276635

DOWNLOAD EBOOK

Generatingfunctionology provides information pertinent to generating functions and some of their uses in discrete mathematics. This book presents the power of the method by giving a number of examples of problems that can be profitably thought about from the point of view of generating functions. Organized into five chapters, this book begins with an overview of the basic concepts of a generating function. This text then discusses the different kinds of series that are widely used as generating functions. Other chapters explain how to make much more precise estimates of the sizes of the coefficients of power series based on the analyticity of the function that is represented by the series. This book discusses as well the applications of the theory of generating functions to counting problems. The final chapter deals with the formal aspects of the theory of generating functions. This book is a valuable resource for mathematicians and students.


Analytic Combinatorics

Analytic Combinatorics

Author: Philippe Flajolet

Publisher: Cambridge University Press

Published: 2009-01-15

Total Pages: 825

ISBN-13: 1139477161

DOWNLOAD EBOOK

Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.


Lectures on Symplectic Geometry

Lectures on Symplectic Geometry

Author: Ana Cannas da Silva

Publisher: Springer

Published: 2004-10-27

Total Pages: 240

ISBN-13: 354045330X

DOWNLOAD EBOOK

The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.


Lessons in Enumerative Combinatorics

Lessons in Enumerative Combinatorics

Author: Ömer Eğecioğlu

Publisher: Springer Nature

Published: 2021-05-13

Total Pages: 479

ISBN-13: 3030712508

DOWNLOAD EBOOK

This textbook introduces enumerative combinatorics through the framework of formal languages and bijections. By starting with elementary operations on words and languages, the authors paint an insightful, unified picture for readers entering the field. Numerous concrete examples and illustrative metaphors motivate the theory throughout, while the overall approach illuminates the important connections between discrete mathematics and theoretical computer science. Beginning with the basics of formal languages, the first chapter quickly establishes a common setting for modeling and counting classical combinatorial objects and constructing bijective proofs. From here, topics are modular and offer substantial flexibility when designing a course. Chapters on generating functions and partitions build further fundamental tools for enumeration and include applications such as a combinatorial proof of the Lagrange inversion formula. Connections to linear algebra emerge in chapters studying Cayley trees, determinantal formulas, and the combinatorics that lie behind the classical Cayley–Hamilton theorem. The remaining chapters range across the Inclusion-Exclusion Principle, graph theory and coloring, exponential structures, matching and distinct representatives, with each topic opening many doors to further study. Generous exercise sets complement all chapters, and miscellaneous sections explore additional applications. Lessons in Enumerative Combinatorics captures the authors' distinctive style and flair for introducing newcomers to combinatorics. The conversational yet rigorous presentation suits students in mathematics and computer science at the graduate, or advanced undergraduate level. Knowledge of single-variable calculus and the basics of discrete mathematics is assumed; familiarity with linear algebra will enhance the study of certain chapters.


Applied Combinatorics

Applied Combinatorics

Author: Fred Roberts

Publisher: CRC Press

Published: 2009-06-03

Total Pages: 889

ISBN-13: 1420099833

DOWNLOAD EBOOK

Now with solutions to selected problems, Applied Combinatorics, Second Edition presents the tools of combinatorics from an applied point of view. This bestselling textbook offers numerous references to the literature of combinatorics and its applications that enable readers to delve more deeply into the topics.After introducing fundamental counting


Discrete Mathematics

Discrete Mathematics

Author: Oscar Levin

Publisher: Createspace Independent Publishing Platform

Published: 2016-08-16

Total Pages: 342

ISBN-13: 9781534970748

DOWNLOAD EBOOK

This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.


Combinatorics: The Art of Counting

Combinatorics: The Art of Counting

Author: Bruce E. Sagan

Publisher: American Mathematical Soc.

Published: 2020-10-16

Total Pages: 304

ISBN-13: 1470460327

DOWNLOAD EBOOK

This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.


Notes on Introductory Combinatorics

Notes on Introductory Combinatorics

Author: George Polya

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 202

ISBN-13: 1475711018

DOWNLOAD EBOOK

In the winter of 1978, Professor George P61ya and I jointly taught Stanford University's introductory combinatorics course. This was a great opportunity for me, as I had known of Professor P61ya since having read his classic book, How to Solve It, as a teenager. Working with P6lya, who ·was over ninety years old at the time, was every bit as rewarding as I had hoped it would be. His creativity, intelligence, warmth and generosity of spirit, and wonderful gift for teaching continue to be an inspiration to me. Combinatorics is one of the branches of mathematics that play a crucial role in computer sCience, since digital computers manipulate discrete, finite objects. Combinatorics impinges on computing in two ways. First, the properties of graphs and other combinatorial objects lead directly to algorithms for solving graph-theoretic problems, which have widespread application in non-numerical as well as in numerical computing. Second, combinatorial methods provide many analytical tools that can be used for determining the worst-case and expected performance of computer algorithms. A knowledge of combinatorics will serve the computer scientist well. Combinatorics can be classified into three types: enumerative, eXistential, and constructive. Enumerative combinatorics deals with the counting of combinatorial objects. Existential combinatorics studies the existence or nonexistence of combinatorial configurations.


Lecture Notes on Motivic Cohomology

Lecture Notes on Motivic Cohomology

Author: Carlo Mazza

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 240

ISBN-13: 9780821838471

DOWNLOAD EBOOK

The notion of a motive is an elusive one, like its namesake "the motif" of Cezanne's impressionist method of painting. Its existence was first suggested by Grothendieck in 1964 as the underlying structure behind the myriad cohomology theories in Algebraic Geometry. We now know that there is a triangulated theory of motives, discovered by Vladimir Voevodsky, which suffices for the development of a satisfactory Motivic Cohomology theory. However, the existence of motives themselves remains conjectural. This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings such as Milnor K-theory, etale cohomology, and Chow groups. The book is divided into lectures, grouped in six parts. The first part presents the definition of Motivic Cohomology, based upon the notion of presheaves with transfers. Some elementary comparison theorems are given in this part. The theory of (etale, Nisnevich, and Zariski) sheaves with transfers is developed in parts two, three, and six, respectively. The theoretical core of the book is the fourth part, presenting the triangulated category of motives. Finally, the comparison with higher Chow groups is developed in part five. The lecture notes format is designed for the book to be read by an advanced graduate student or an expert in a related field. The lectures roughly correspond to one-hour lectures given by Voevodsky during the course he gave at the Institute for Advanced Study in Princeton on this subject in 1999-2000. In addition, many of the original proofs have been simplified and improved so that this book will also be a useful tool for research mathematicians. Information for our distributors: Titles in this series are copublished with the Clay Mathematics Institute (Cambridge, MA).