This title is part of UC Press's Voices Revived program, which commemorates University of California Press’s mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1964.
Methods of Statistical Physics is an exposition of the tools of statistical mechanics, which evaluates the kinetic equations of classical and quantized systems. The book also analyzes the equations of macroscopic physics, such as the equations of hydrodynamics for normal and superfluid liquids and macroscopic electrodynamics. The text gives particular attention to the study of quantum systems. This study begins with a discussion of problems of quantum statistics with a detailed description of the basics of quantum mechanics along with the theory of measurement. An analysis of the asymptotic behavior of universal quantities is also explained. Strong consideration is given to the systems with spontaneously broken system. Theories such as the kinetic theory of gases, the theory of Brownian motion, the theory of the slowing down of neutrons, and the theory of transport phenomena in crystals are discussed. The book will be a useful tool for physicists, mathematicians, students, and researchers in the field of statistical mechanics.
This comprehensive anthology draws together writings by leading philosophers of science and will prove invaluable for any philosophy of science course.
The more than forty readings in this anthology cover the most important developments of the past six decades, charting the rise and decline of logical positivism and the gradual emergence of a new consensus concerning the major issues and theoretical options in the field. As an introduction to the philosophy of science, it stands out for its scope, its coverage of both historical and contemporary developments, and its detailed introductions to each area discussed.
Understand the relationship between information theory and the physics of wave propagation with this expert guide. Balancing fundamental theory with engineering applications, it describes the mechanism and limits for the representation and communication of information using electromagnetic waves. Information-theoretic laws relating functional approximation and quantum uncertainty principles to entropy, capacity, mutual information, rate distortion, and degrees of freedom of band-limited radiation are derived and explained. Both stochastic and deterministic approaches are explored, and applications for sensing and signal reconstruction, wireless communication, and networks of multiple transmitters and receivers are reviewed. With end-of-chapter exercises and suggestions for further reading enabling in-depth understanding of key concepts, it is the ideal resource for researchers and graduate students in electrical engineering, physics and applied mathematics looking for a fresh perspective on classical information theory.
In this volume, some of the world's leading scientists discuss the role of complexity across all the scientific disciplines. Opinions differ: for some, complexity holds the key to a deeper and fuller understanding of the world; to others, it is merely a modern version of the philsophers' stone.
This book presents the life and personality, the scientific and philosophical work of Ludwig Boltzmann, one of the great scientists who marked the passage from 19th- to 20th-Century physics. His rich and tragic life, ending by suicide at the age of 62, is described in detail. A substantial part of the book is devoted to discussing his scientific and philosophical ideas and placing them in the context of the second half of the 19th century. The fact that Boltzmann was the man who did most to establish that there is a microscopic, atomic structure underlying macroscopic bodies is documented, as is Boltzmann's influence on modern physics, especially through the work of Planck on light quanta and of Einstein on Brownian motion. Boltzmann was the centre of a scientific upheaval, and he has been proved right on many crucial issues. He anticipated Kuhn's theory of scientific revolutions and proposed a theory of knowledge based on Darwin. His basic results, when properly understood, can also be stated as mathematical theorems. Some of these have been proved: others are still at the level of likely but unproven conjectures. The main text of this biography is written almost entirely without equations. Mathematical appendices deepen knowledge of some technical aspects of the subject.