Proceedings of the St. Petersburg Mathematical Society, Volume VIII

Proceedings of the St. Petersburg Mathematical Society, Volume VIII

Author: N.N. Uraltseva

Publisher: American Mathematical Soc.

Published: 2002-04-02

Total Pages: 224

ISBN-13: 9780821896068

DOWNLOAD EBOOK

The articles in this collection present new results in partial differential equations, numerical analysis, probability theory, and geometry. The results, ideas, and methods given in the book will be of interest to a broad range of specialists.


Nonlinear Elliptic Equations of the Second Order

Nonlinear Elliptic Equations of the Second Order

Author: Qing Han

Publisher: American Mathematical Soc.

Published: 2016-04-15

Total Pages: 378

ISBN-13: 1470426072

DOWNLOAD EBOOK

Nonlinear elliptic differential equations are a diverse subject with important applications to the physical and social sciences and engineering. They also arise naturally in geometry. In particular, much of the progress in the area in the twentieth century was driven by geometric applications, from the Bernstein problem to the existence of Kähler–Einstein metrics. This book, designed as a textbook, provides a detailed discussion of the Dirichlet problems for quasilinear and fully nonlinear elliptic differential equations of the second order with an emphasis on mean curvature equations and on Monge–Ampère equations. It gives a user-friendly introduction to the theory of nonlinear elliptic equations with special attention given to basic results and the most important techniques. Rather than presenting the topics in their full generality, the book aims at providing self-contained, clear, and “elementary” proofs for results in important special cases. This book will serve as a valuable resource for graduate students or anyone interested in this subject.


Second Order Elliptic Equations and Elliptic Systems

Second Order Elliptic Equations and Elliptic Systems

Author: Ya-Zhe Chen

Publisher: American Mathematical Soc.

Published: 1998

Total Pages: 266

ISBN-13: 0821819240

DOWNLOAD EBOOK

There are two parts to the book. In the first part, a complete introduction of various kinds of a priori estimate methods for the Dirichlet problem of second order elliptic partial differential equations is presented. In the second part, the existence and regularity theories of the Dirichlet problem for linear and nonlinear second order elliptic partial differential systems are introduced. The book features appropriate materials and is an excellent textbook for graduate students. The volume is also useful as a reference source for undergraduate mathematics majors, graduate students, professors, and scientists.


Fully Nonlinear Elliptic Equations

Fully Nonlinear Elliptic Equations

Author: Luis A. Caffarelli

Publisher: American Mathematical Soc.

Published: 1995

Total Pages: 114

ISBN-13: 0821804375

DOWNLOAD EBOOK

The goal of the book is to extend classical regularity theorems for solutions of linear elliptic partial differential equations to the context of fully nonlinear elliptic equations. This class of equations often arises in control theory, optimization, and other applications. The authors give a detailed presentation of all the necessary techniques. Instead of treating these techniques in their greatest generality, they outline the key ideas and prove the results needed for developing the subsequent theory. Topics discussed in the book include the theory of viscosity solutions for nonlinear equations, the Alexandroff estimate and Krylov-Safonov Harnack-type inequality for viscosity solutions, uniqueness theory for viscosity solutions, Evans and Krylov regularity theory for convex fully nonlinear equations, and regularity theory for fully nonlinear equations with variable coefficients.


Lectures on Elliptic Partial Differential Equations

Lectures on Elliptic Partial Differential Equations

Author: Luigi Ambrosio

Publisher: Springer

Published: 2019-01-10

Total Pages: 234

ISBN-13: 8876426515

DOWNLOAD EBOOK

The book originates from the Elliptic PDE course given by the first author at the Scuola Normale Superiore in recent years. It covers the most classical aspects of the theory of Elliptic Partial Differential Equations and Calculus of Variations, including also more recent developments on partial regularity for systems and the theory of viscosity solutions.


Lectures on Elliptic and Parabolic Equations in Holder Spaces

Lectures on Elliptic and Parabolic Equations in Holder Spaces

Author: Nikolaĭ Vladimirovich Krylov

Publisher: American Mathematical Soc.

Published: 1996

Total Pages: 178

ISBN-13: 082180569X

DOWNLOAD EBOOK

These lectures concentrate on fundamentals of the modern theory of linear elliptic and parabolic equations in H older spaces. Krylov shows that this theory - including some issues of the theory of nonlinear equations - is based on some general and extremely powerful ideas and some simple computations. The main object of study is the first boundary-value problems for elliptic and parabolic equations, with some guidelines concerning other boundary-value problems such as the Neumann or oblique derivative problems or problems involving higher-order elliptic operators acting on the boundary. Numerical approximations are also discussed. This book, containing 200 exercises, aims to provide a good understanding of what kind of results are available and what kinds of techniques are used to obtain them.


Elliptic Partial Differential Equations

Elliptic Partial Differential Equations

Author: Qing Han

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 161

ISBN-13: 0821853139

DOWNLOAD EBOOK

This volume is based on PDE courses given by the authors at the Courant Institute and at the University of Notre Dame, Indiana. Presented are basic methods for obtaining various a priori estimates for second-order equations of elliptic type with particular emphasis on maximal principles, Harnack inequalities, and their applications. The equations considered in the book are linear; however, the presented methods also apply to nonlinear problems.


Elliptic Partial Differential Equations of Second Order

Elliptic Partial Differential Equations of Second Order

Author: David Gilbarg

Publisher: Springer Science & Business Media

Published: 2001-01-12

Total Pages: 544

ISBN-13: 9783540411604

DOWNLOAD EBOOK

This work aims to be of interest to those who have to work with differential equations and acts either as a reference or as a book to learn from. The authors have made the treatment self-contained.


Elliptic Partial Differential Equations of Second Order

Elliptic Partial Differential Equations of Second Order

Author: D. Gilbarg

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 409

ISBN-13: 364296379X

DOWNLOAD EBOOK

This volume is intended as an essentially self contained exposition of portions of the theory of second order quasilinear elliptic partial differential equations, with emphasis on the Dirichlet problem in bounded domains. It grew out of lecture notes for graduate courses by the authors at Stanford University, the final material extending well beyond the scope of these courses. By including preparatory chapters on topics such as potential theory and functional analysis, we have attempted to make the work accessible to a broad spectrum of readers. Above all, we hope the readers of this book will gain an appreciation of the multitude of ingenious barehanded techniques that have been developed in the study of elliptic equations and have become part of the repertoire of analysis. Many individuals have assisted us during the evolution of this work over the past several years. In particular, we are grateful for the valuable discussions with L. M. Simon and his contributions in Sections 15.4 to 15.8; for the helpful comments and corrections of J. M. Cross, A. S. Geue, J. Nash, P. Trudinger and B. Turkington; for the contributions of G. Williams in Section 10.5 and of A. S. Geue in Section 10.6; and for the impeccably typed manuscript which resulted from the dedicated efforts oflsolde Field at Stanford and Anna Zalucki at Canberra. The research of the authors connected with this volume was supported in part by the National Science Foundation.


Sobolev and Viscosity Solutions for Fully Nonlinear Elliptic and Parabolic Equations

Sobolev and Viscosity Solutions for Fully Nonlinear Elliptic and Parabolic Equations

Author: N. V. Krylov

Publisher: American Mathematical Soc.

Published: 2018-09-07

Total Pages: 458

ISBN-13: 1470447401

DOWNLOAD EBOOK

This book concentrates on first boundary-value problems for fully nonlinear second-order uniformly elliptic and parabolic equations with discontinuous coefficients. We look for solutions in Sobolev classes, local or global, or for viscosity solutions. Most of the auxiliary results, such as Aleksandrov's elliptic and parabolic estimates, the Krylov–Safonov and the Evans–Krylov theorems, are taken from old sources, and the main results were obtained in the last few years. Presentation of these results is based on a generalization of the Fefferman–Stein theorem, on Fang-Hua Lin's like estimates, and on the so-called “ersatz” existence theorems, saying that one can slightly modify “any” equation and get a “cut-off” equation that has solutions with bounded derivatives. These theorems allow us to prove the solvability in Sobolev classes for equations that are quite far from the ones which are convex or concave with respect to the Hessians of the unknown functions. In studying viscosity solutions, these theorems also allow us to deal with classical approximating solutions, thus avoiding sometimes heavy constructions from the usual theory of viscosity solutions.