Learning Representation for Multi-View Data Analysis

Learning Representation for Multi-View Data Analysis

Author: Zhengming Ding

Publisher: Springer

Published: 2018-12-06

Total Pages: 272

ISBN-13: 3030007340

DOWNLOAD EBOOK

This book equips readers to handle complex multi-view data representation, centered around several major visual applications, sharing many tips and insights through a unified learning framework. This framework is able to model most existing multi-view learning and domain adaptation, enriching readers’ understanding from their similarity, and differences based on data organization and problem settings, as well as the research goal. A comprehensive review exhaustively provides the key recent research on multi-view data analysis, i.e., multi-view clustering, multi-view classification, zero-shot learning, and domain adaption. More practical challenges in multi-view data analysis are discussed including incomplete, unbalanced and large-scale multi-view learning. Learning Representation for Multi-View Data Analysis covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.


Recent Applications in Data Clustering

Recent Applications in Data Clustering

Author: Harun Pirim

Publisher: BoD – Books on Demand

Published: 2018-08-01

Total Pages: 250

ISBN-13: 178923526X

DOWNLOAD EBOOK

Clustering has emerged as one of the more fertile fields within data analytics, widely adopted by companies, research institutions, and educational entities as a tool to describe similar/different groups. The book Recent Applications in Data Clustering aims to provide an outlook of recent contributions to the vast clustering literature that offers useful insights within the context of modern applications for professionals, academics, and students. The book spans the domains of clustering in image analysis, lexical analysis of texts, replacement of missing values in data, temporal clustering in smart cities, comparison of artificial neural network variations, graph theoretical approaches, spectral clustering, multiview clustering, and model-based clustering in an R package. Applications of image, text, face recognition, speech (synthetic and simulated), and smart city datasets are presented.


Multiview Machine Learning

Multiview Machine Learning

Author: Shiliang Sun

Publisher: Springer

Published: 2019-01-07

Total Pages: 155

ISBN-13: 9811330298

DOWNLOAD EBOOK

This book provides a unique, in-depth discussion of multiview learning, one of the fastest developing branches in machine learning. Multiview Learning has been proved to have good theoretical underpinnings and great practical success. This book describes the models and algorithms of multiview learning in real data analysis. Incorporating multiple views to improve the generalization performance, multiview learning is also known as data fusion or data integration from multiple feature sets. This self-contained book is applicable for multi-modal learning research, and requires minimal prior knowledge of the basic concepts in the field. It is also a valuable reference resource for researchers working in the field of machine learning and also those in various application domains.


Recent Advancements in Multi-View Data Analytics

Recent Advancements in Multi-View Data Analytics

Author: Witold Pedrycz

Publisher: Springer Nature

Published: 2022-05-20

Total Pages: 346

ISBN-13: 3030952398

DOWNLOAD EBOOK

This book provides timely studies on multi-view facets of data analytics by covering recent trends in processing and reasoning about data originating from an array of local sources. A multi-view nature of data analytics is encountered when working with a variety of real-world scenarios including clustering, consensus building in decision processes, computer vision, knowledge representation, big data, data streaming, among others. The chapters demonstrate recent pursuits in the methodology, theory, advanced algorithms, and applications of multi-view data analytics and bring new perspectives of data interpretation. The timely book will appeal to a broad readership including both researchers and practitioners interested in gaining exposure to the rapidly growing trend of multi-view data analytics and intelligent systems.


Behavior Analysis with Machine Learning Using R

Behavior Analysis with Machine Learning Using R

Author: Enrique Garcia Ceja

Publisher: CRC Press

Published: 2021-11-26

Total Pages: 370

ISBN-13: 1000484254

DOWNLOAD EBOOK

Behavior Analysis with Machine Learning Using R introduces machine learning and deep learning concepts and algorithms applied to a diverse set of behavior analysis problems. It focuses on the practical aspects of solving such problems based on data collected from sensors or stored in electronic records. The included examples demonstrate how to perform common data analysis tasks such as: data exploration, visualization, preprocessing, data representation, model training and evaluation. All of this, using the R programming language and real-life behavioral data. Even though the examples focus on behavior analysis tasks, the covered underlying concepts and methods can be applied in any other domain. No prior knowledge in machine learning is assumed. Basic experience with R and basic knowledge in statistics and high school level mathematics are beneficial. Features: Build supervised machine learning models to predict indoor locations based on WiFi signals, recognize physical activities from smartphone sensors and 3D skeleton data, detect hand gestures from accelerometer signals, and so on. Program your own ensemble learning methods and use Multi-View Stacking to fuse signals from heterogeneous data sources. Use unsupervised learning algorithms to discover criminal behavioral patterns. Build deep learning neural networks with TensorFlow and Keras to classify muscle activity from electromyography signals and Convolutional Neural Networks to detect smiles in images. Evaluate the performance of your models in traditional and multi-user settings. Build anomaly detection models such as Isolation Forests and autoencoders to detect abnormal fish behaviors. This book is intended for undergraduate/graduate students and researchers from ubiquitous computing, behavioral ecology, psychology, e-health, and other disciplines who want to learn the basics of machine learning and deep learning and for the more experienced individuals who want to apply machine learning to analyze behavioral data.


Graph Representation Learning

Graph Representation Learning

Author: William L. William L. Hamilton

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 141

ISBN-13: 3031015886

DOWNLOAD EBOOK

Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.


Robust Representation for Data Analytics

Robust Representation for Data Analytics

Author: Sheng Li

Publisher: Springer

Published: 2017-08-09

Total Pages: 229

ISBN-13: 3319601768

DOWNLOAD EBOOK

This book introduces the concepts and models of robust representation learning, and provides a set of solutions to deal with real-world data analytics tasks, such as clustering, classification, time series modeling, outlier detection, collaborative filtering, community detection, etc. Three types of robust feature representations are developed, which extend the understanding of graph, subspace, and dictionary. Leveraging the theory of low-rank and sparse modeling, the authors develop robust feature representations under various learning paradigms, including unsupervised learning, supervised learning, semi-supervised learning, multi-view learning, transfer learning, and deep learning. Robust Representations for Data Analytics covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.


Recent Developments in Mechatronics and Intelligent Robotics

Recent Developments in Mechatronics and Intelligent Robotics

Author: Kevin Deng

Publisher: Springer

Published: 2018-10-04

Total Pages: 1291

ISBN-13: 3030002144

DOWNLOAD EBOOK

This book is a collection of proceedings of the International Conference on Mechatronics and Intelligent Robotics (ICMIR2018), held in Kunming, China during May 19–20, 2018. It consists of 155 papers, which have been categorized into 6 different sections: Intelligent Systems, Robotics, Intelligent Sensors & Actuators, Mechatronics, Computational Vision and Machine Learning, and Soft Computing. The volume covers the latest ideas and innovations both from the industrial and academic worlds, as well as shares the best practices in the fields of mechanical engineering, mechatronics, automatic control, IOT and its applications in industry, electrical engineering, finite element analysis and computational engineering. The volume covers key research outputs, which delivers a wealth of new ideas and food for thought to the readers.


Big Data Analytics and Knowledge Discovery

Big Data Analytics and Knowledge Discovery

Author: Min Song

Publisher: Springer Nature

Published: 2020-09-10

Total Pages: 413

ISBN-13: 3030590658

DOWNLOAD EBOOK

The volume LNCS 12393 constitutes the papers of the 22nd International Conference Big Data Analytics and Knowledge Discovery which will be held online in September 2020. The 15 full papers presented together with 14 short papers plus 1 position paper in this volume were carefully reviewed and selected from a total of 77 submissions. This volume offers a wide range to following subjects on theoretical and practical aspects of big data analytics and knowledge discovery as a new generation of big data repository, data pre-processing, data mining, text mining, sequences, graph mining, and parallel processing.


Neural Information Processing

Neural Information Processing

Author: Long Cheng

Publisher: Springer

Published: 2018-12-03

Total Pages: 716

ISBN-13: 303004212X

DOWNLOAD EBOOK

The seven-volume set of LNCS 11301-11307, constitutes the proceedings of the 25th International Conference on Neural Information Processing, ICONIP 2018, held in Siem Reap, Cambodia, in December 2018. The 401 full papers presented were carefully reviewed and selected from 575 submissions. The papers address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniques across different domains. The 4th volume, LNCS 11304, is organized in topical sections on feature selection, clustering, classification, and detection.