Probabilistic Graphical Models for Computer Vision

Probabilistic Graphical Models for Computer Vision

Author: Qiang Ji

Publisher: Academic Press

Published: 2019-11

Total Pages: 294

ISBN-13: 012803467X

DOWNLOAD EBOOK

Probabilistic Graphical Models for Computer Vision introduces probabilistic graphical models (PGMs) for computer vision problems and teaches how to develop the PGM model from training data. This book discusses PGMs and their significance in the context of solving computer vision problems, giving the basic concepts, definitions and properties. It also provides a comprehensive introduction to well-established theories for different types of PGMs, including both directed and undirected PGMs, such as Bayesian Networks, Markov Networks and their variants. Discusses PGM theories and techniques with computer vision examples Focuses on well-established PGM theories that are accompanied by corresponding pseudocode for computer vision Includes an extensive list of references, online resources and a list of publicly available and commercial software Covers computer vision tasks, including feature extraction and image segmentation, object and facial recognition, human activity recognition, object tracking and 3D reconstruction


Probabilistic Graphical Models

Probabilistic Graphical Models

Author: Daphne Koller

Publisher: MIT Press

Published: 2009-07-31

Total Pages: 1270

ISBN-13: 0262258358

DOWNLOAD EBOOK

A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.


Mastering Probabilistic Graphical Models Using Python

Mastering Probabilistic Graphical Models Using Python

Author: Ankur Ankan

Publisher: Packt Publishing Ltd

Published: 2015-08-03

Total Pages: 284

ISBN-13: 1784395218

DOWNLOAD EBOOK

Master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python About This Book Gain in-depth knowledge of Probabilistic Graphical Models Model time-series problems using Dynamic Bayesian Networks A practical guide to help you apply PGMs to real-world problems Who This Book Is For If you are a researcher or a machine learning enthusiast, or are working in the data science field and have a basic idea of Bayesian Learning or Probabilistic Graphical Models, this book will help you to understand the details of Graphical Models and use it in your data science problems. This book will also help you select the appropriate model as well as the appropriate algorithm for your problem. What You Will Learn Get to know the basics of Probability theory and Graph Theory Work with Markov Networks Implement Bayesian Networks Exact Inference Techniques in Graphical Models such as the Variable Elimination Algorithm Understand approximate Inference Techniques in Graphical Models such as Message Passing Algorithms Sample algorithms in Graphical Models Grasp details of Naive Bayes with real-world examples Deploy PGMs using various libraries in Python Gain working details of Hidden Markov Models with real-world examples In Detail Probabilistic Graphical Models is a technique in machine learning that uses the concepts of graph theory to compactly represent and optimally predict values in our data problems. In real world problems, it's often difficult to select the appropriate graphical model as well as the appropriate inference algorithm, which can make a huge difference in computation time and accuracy. Thus, it is crucial to know the working details of these algorithms. This book starts with the basics of probability theory and graph theory, then goes on to discuss various models and inference algorithms. All the different types of models are discussed along with code examples to create and modify them, and also to run different inference algorithms on them. There is a complete chapter devoted to the most widely used networks Naive Bayes Model and Hidden Markov Models (HMMs). These models have been thoroughly discussed using real-world examples. Style and approach An easy-to-follow guide to help you understand Probabilistic Graphical Models using simple examples and numerous code examples, with an emphasis on more widely used models.


Building Probabilistic Graphical Models with Python

Building Probabilistic Graphical Models with Python

Author: Kiran K. Karkera

Publisher: CreateSpace

Published: 2015-05-18

Total Pages: 172

ISBN-13: 9781512220056

DOWNLOAD EBOOK

With the increasing prominence in machine learning and data science applications, probabilistic graphical models are a new tool that machine learning users can use to discover and analyze structures in complex problems. The variety of tools and algorithms under the PGM framework extend to many domains such as natural language processing, speech processing, image processing, and disease diagnosis. You've probably heard of graphical models before, and you're keen to try out new landscapes in the machine learning area. This book gives you enough background information to get started on graphical models, while keeping the math to a minimum. Approach This is a short, practical guide that allows data scientists to understand the concepts of Graphical models and enables them to try them out using small Python code snippets, without being too mathematically complicated. Who this book is for If you are a data scientist who knows about machine learning and want to enhance your knowledge of graphical models, such as Bayes network, in order to use them to solve real-world problems using Python libraries, this book is for you.This book is intended for those who have some Python and machine learning experience, or are exploring the machine learning field.


Mastering Probabilistic Graphical Models Using Python

Mastering Probabilistic Graphical Models Using Python

Author: Ankur Ankan

Publisher:

Published: 2015

Total Pages: 0

ISBN-13: 9781784394684

DOWNLOAD EBOOK

About This Book Gain in-depth knowledge of Probabilistic Graphical Models Model time-series problems using Dynamic Bayesian Networks A practical guide to help you apply PGMs to real-world problems Who This Book Is For If you are a researcher or a machine learning enthusiast, or are working in the data science field and have a basic idea of Bayesian learning or probabilistic graphical models, this book will help you to understand the details of graphical models and use them in your data science problems. What You Will Learn Get to know the basics of probability theory and graph theory Work with Markov networks Implement Bayesian networks Exact inference techniques in graphical models such as the variable elimination algorithm Understand approximate inference techniques in graphical models such as message passing algorithms Sampling algorithms in graphical models Grasp details of Naive Bayes with real-world examples Deploy probabilistic graphical models using various libraries in Python Gain working details of Hidden Markov models with real-world examples In Detail Probabilistic graphical models is a technique in machine learning that uses the concepts of graph theory to concisely represent and optimally predict values in our data problems. Graphical models gives us techniques to find complex patterns in the data and are widely used in the field of speech recognition, information extraction, image segmentation, and modeling gene regulatory networks. This book starts with the basics of probability theory and graph theory, then goes on to discuss various models and inference algorithms. All the different types of models are discussed along with code examples to create and modify them, and also run different inference algorithms on them. There is an entire chapter that goes on to cover Naive Bayes model and Hidden Markov models. These models have been thoroughly discussed using real-world examples.


Probabilistic Graphical Models

Probabilistic Graphical Models

Author: Luis Enrique Sucar

Publisher: Springer Nature

Published: 2020-12-23

Total Pages: 370

ISBN-13: 3030619435

DOWNLOAD EBOOK

This fully updated new edition of a uniquely accessible textbook/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. It features new material on partially observable Markov decision processes, causal graphical models, causal discovery and deep learning, as well as an even greater number of exercises; it also incorporates a software library for several graphical models in Python. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes. Topics and features: Presents a unified framework encompassing all of the main classes of PGMs Explores the fundamental aspects of representation, inference and learning for each technique Examines new material on partially observable Markov decision processes, and graphical models Includes a new chapter introducing deep neural networks and their relation with probabilistic graphical models Covers multidimensional Bayesian classifiers, relational graphical models, and causal models Provides substantial chapter-ending exercises, suggestions for further reading, and ideas for research or programming projects Describes classifiers such as Gaussian Naive Bayes, Circular Chain Classifiers, and Hierarchical Classifiers with Bayesian Networks Outlines the practical application of the different techniques Suggests possible course outlines for instructors This classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference. Dr. Luis Enrique Sucar is a Senior Research Scientist at the National Institute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico. He received the National Science Prize en 2016.


Learning in Graphical Models

Learning in Graphical Models

Author: M.I. Jordan

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 658

ISBN-13: 9401150141

DOWNLOAD EBOOK

In the past decade, a number of different research communities within the computational sciences have studied learning in networks, starting from a number of different points of view. There has been substantial progress in these different communities and surprising convergence has developed between the formalisms. The awareness of this convergence and the growing interest of researchers in understanding the essential unity of the subject underlies the current volume. Two research communities which have used graphical or network formalisms to particular advantage are the belief network community and the neural network community. Belief networks arose within computer science and statistics and were developed with an emphasis on prior knowledge and exact probabilistic calculations. Neural networks arose within electrical engineering, physics and neuroscience and have emphasised pattern recognition and systems modelling problems. This volume draws together researchers from these two communities and presents both kinds of networks as instances of a general unified graphical formalism. The book focuses on probabilistic methods for learning and inference in graphical models, algorithm analysis and design, theory and applications. Exact methods, sampling methods and variational methods are discussed in detail. Audience: A wide cross-section of computationally oriented researchers, including computer scientists, statisticians, electrical engineers, physicists and neuroscientists.