Learning Automata and Their Applications to Intelligent Systems

Learning Automata and Their Applications to Intelligent Systems

Author: JunQi Zhang

Publisher: John Wiley & Sons

Published: 2023-12-12

Total Pages: 276

ISBN-13: 1394188498

DOWNLOAD EBOOK

Comprehensive guide on learning automata, introducing two variants to accelerate convergence and computational update speed Learning Automata and Their Applications to Intelligent Systems provides a comprehensive guide on learning automata from the perspective of principles, algorithms, improvement directions, and applications. The text introduces two variants to accelerate the convergence speed and computational update speed, respectively; these two examples demonstrate how to design new learning automata for a specific field from the aspect of algorithm design to give full play to the advantage of learning automata. As noisy optimization problems exist widely in various intelligent systems, this book elaborates on how to employ learning automata to solve noisy optimization problems from the perspective of algorithm design and application. The existing and most representative applications of learning automata include classification, clustering, game, knapsack, network, optimization, ranking, and scheduling. They are well-discussed. Future research directions to promote an intelligent system are suggested. Written by two highly qualified academics with significant experience in the field, Learning Automata and Their Applications to Intelligent Systems covers such topics as: Mathematical analysis of the behavior of learning automata, along with suitable learning algorithms Two application-oriented learning automata: one to discover and track spatiotemporal event patterns, and the other to solve stochastic searching on a line Demonstrations of two pioneering variants of Optimal Computing Budge Allocation (OCBA) methods and how to combine learning automata with ordinal optimization How to achieve significantly faster convergence and higher accuracy than classical pursuit schemes via lower computational complexity of updating the state probability A timely text in a rapidly developing field, Learning Automata and Their Applications to Intelligent Systems is an essential resource for researchers in machine learning, engineering, operation, and management. The book is also highly suitable for graduate level courses on machine learning, soft computing, reinforcement learning and stochastic optimization.


Recent Advances in Learning Automata

Recent Advances in Learning Automata

Author: Alireza Rezvanian

Publisher: Springer

Published: 2018-01-17

Total Pages: 471

ISBN-13: 3319724282

DOWNLOAD EBOOK

This book collects recent theoretical advances and concrete applications of learning automata (LAs) in various areas of computer science, presenting a broad treatment of the computer science field in a survey style. Learning automata (LAs) have proven to be effective decision-making agents, especially within unknown stochastic environments. The book starts with a brief explanation of LAs and their baseline variations. It subsequently introduces readers to a number of recently developed, complex structures used to supplement LAs, and describes their steady-state behaviors. These complex structures have been developed because, by design, LAs are simple units used to perform simple tasks; their full potential can only be tapped when several interconnected LAs cooperate to produce a group synergy. In turn, the next part of the book highlights a range of LA-based applications in diverse computer science domains, from wireless sensor networks, to peer-to-peer networks, to complex social networks, and finally to Petri nets. The book accompanies the reader on a comprehensive journey, starting from basic concepts, continuing to recent theoretical findings, and ending in the applications of LAs in problems from numerous research domains. As such, the book offers a valuable resource for all computer engineers, scientists, and students, especially those whose work involves the reinforcement learning and artificial intelligence domains.


Cellular Learning Automata: Theory and Applications

Cellular Learning Automata: Theory and Applications

Author: Reza Vafashoar

Publisher: Springer Nature

Published: 2020-07-24

Total Pages: 377

ISBN-13: 3030531414

DOWNLOAD EBOOK

This book highlights both theoretical and applied advances in cellular learning automata (CLA), a type of hybrid computational model that has been successfully employed in various areas to solve complex problems and to model, learn, or simulate complicated patterns of behavior. Owing to CLA’s parallel and learning abilities, it has proven to be quite effective in uncertain, time-varying, decentralized, and distributed environments. The book begins with a brief introduction to various CLA models, before focusing on recently developed CLA variants. In turn, the research areas related to CLA are addressed as bibliometric network analysis perspectives. The next part of the book presents CLA-based solutions to several computer science problems in e.g. static optimization, dynamic optimization, wireless networks, mesh networks, and cloud computing. Given its scope, the book is well suited for all researchers in the fields of artificial intelligence and reinforcement learning.


Advances in Learning Automata and Intelligent Optimization

Advances in Learning Automata and Intelligent Optimization

Author: Javidan Kazemi Kordestani

Publisher: Springer Nature

Published: 2021-06-23

Total Pages: 340

ISBN-13: 3030762912

DOWNLOAD EBOOK

This book is devoted to the leading research in applying learning automaton (LA) and heuristics for solving benchmark and real-world optimization problems. The ever-increasing application of the LA as a promising reinforcement learning technique in artificial intelligence makes it necessary to provide scholars, scientists, and engineers with a practical discussion on LA solutions for optimization. The book starts with a brief introduction to LA models for optimization. Afterward, the research areas related to LA and optimization are addressed as bibliometric network analysis. Then, LA's application in behavior control in evolutionary computation, and memetic models of object migration automata and cellular learning automata for solving NP hard problems are considered. Next, an overview of multi-population methods for DOPs, LA's application in dynamic optimization problems (DOPs), and the function evaluation management in evolutionary multi-population for DOPs are discussed. Highlighted benefits • Presents the latest advances in learning automata-based optimization approaches. • Addresses the memetic models of learning automata for solving NP-hard problems. • Discusses the application of learning automata for behavior control in evolutionary computation in detail. • Gives the fundamental principles and analyses of the different concepts associated with multi-population methods for dynamic optimization problems.


Intelligent Systems

Intelligent Systems

Author: Cornelius T. Leondes

Publisher: CRC Press

Published: 2018-10-08

Total Pages: 2400

ISBN-13: 1420040812

DOWNLOAD EBOOK

Intelligent systems, or artificial intelligence technologies, are playing an increasing role in areas ranging from medicine to the major manufacturing industries to financial markets. The consequences of flawed artificial intelligence systems are equally wide ranging and can be seen, for example, in the programmed trading-driven stock market crash of October 19, 1987. Intelligent Systems: Technology and Applications, Six Volume Set connects theory with proven practical applications to provide broad, multidisciplinary coverage in a single resource. In these volumes, international experts present case-study examples of successful practical techniques and solutions for diverse applications ranging from robotic systems to speech and signal processing, database management, and manufacturing.


Industrial Intelligent Control

Industrial Intelligent Control

Author: Yong-Zai Lu

Publisher: John Wiley & Sons

Published: 1996-05-01

Total Pages: 350

ISBN-13: 9780471950585

DOWNLOAD EBOOK

With a strong emphasis on applications of intelligent control, this extremely accessible book covers the fundamentals, methodologies, architectures and algorithms of automatic control systems. The author summarizes several current concepts to improve industrial control systems, combining classical control techniques of dynamic modeling and control with new approaches discussed in the text. Addresses such intelligent systems as neural networks, fuzzy logic, ruled based, and genetic algorithms. Demonstrates how to develop, design and use intelligent systems to solve sophisticated industrial control problems. Includes numerous worked application examples.


Recent Trends in Applied Artificial Intelligence

Recent Trends in Applied Artificial Intelligence

Author: Moonis Ali

Publisher: Springer

Published: 2013-05-20

Total Pages: 715

ISBN-13: 364238577X

DOWNLOAD EBOOK

This volume constitutes the thoroughly refereed conference proceedings of the 26th International Conference on Industrial Engineering and Other Applications of Applied Intelligence Systems, IEA/AIE 2013, held in Amsterdam, The Netherlands, in June 2013. The total of 71 papers selected for the proceedings were carefully reviewed and selected from 185 submissions. The papers focus on the following topics: auctions and negotiation, cognitive modeling, crowd behavior modeling, distributed systems and networks, evolutionary algorithms, knowledge representation and reasoning, pattern recognition, planning, problem solving, robotics, text mining, advances in recommender systems, business process intelligence, decision support for safety-related systems, innovations in intelligent computation and applications, intelligent image and signal processing, and machine learning methods applied to manufacturing processes and production systems.


Trends in Applied Intelligent Systems

Trends in Applied Intelligent Systems

Author: Nicolás García-Pedrajas

Publisher: Springer

Published: 2011-01-22

Total Pages: 691

ISBN-13: 364213033X

DOWNLOAD EBOOK

Annotation The three volume set LNAI 6096, LNAI 6097, and LNAI 6098 constitutes the thoroughly refereed conference proceedings of the 23rd International Conference on Industrial Engineering and Other Applications of Applied Intelligend Systems, IEA/AIE 2010, held in Cordoba, Spain, in June 2010. The total of 119 papers selected for the proceedings were carefully reviewed and selected from 297 submissions.


Advances in Data-driven Computing and Intelligent Systems

Advances in Data-driven Computing and Intelligent Systems

Author: Swagatam Das

Publisher: Springer Nature

Published: 2023-06-21

Total Pages: 892

ISBN-13: 9819909813

DOWNLOAD EBOOK

The volume is a collection of best selected research papers presented at International Conference on Advances in Data-driven Computing and Intelligent Systems (ADCIS 2022) held at BITS Pilani, K K Birla Goa Campus, Goa, India during 23 – 25 September 2022. It includes state-of-the art research work in the cutting-edge technologies in the field of data science and intelligent systems. The book presents data-driven computing; it is a new field of computational analysis which uses provided data to directly produce predictive outcomes. The book will be useful for academicians, research scholars, and industry persons.


Multiple Approaches to Intelligent Systems

Multiple Approaches to Intelligent Systems

Author: Ibrahim F. Imam

Publisher: Springer

Published: 2004-05-19

Total Pages: 918

ISBN-13: 3540487654

DOWNLOAD EBOOK

We never create anything, We discover and reproduce. The Twelfth International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems has a distinguished theme. It is concerned with bridging the gap between the academic and the industrial worlds of Artificial Intelligence (AI) and Expert Systems. The academic world is mainly concerned with discovering new algorithms, approaches, and methodologies; however, the industrial world is mainly driven by profits, and concerned with producing new products or solving customers’ problems. Ten years ago, the artificial intelligence research gap between academia and industry was very broad. Recently, this gap has been narrowed by the emergence of new fields and new joint research strategies in academia. Among the new fields which contributed to the academic-industrial convergence are knowledge representation, machine learning, searching, reasoning, distributed AI, neural networks, data mining, intelligent agents, robotics, pattern recognition, vision, applications of expert systems, and others. It is worth noting that the end results of research in these fields are usually products rather than empirical analyses and theoretical proofs. Applications of such technologies have found great success in many domains including fraud detection, internet service, banking, credit risk and assessment, telecommunication, etc. Progress in these areas has encouraged the leading corporations to institute research funding programs for academic institutes. Others have their own research laboratories, some of which produce state of the art research.