Learn AI-Assisted Python Programming, Second Edition

Learn AI-Assisted Python Programming, Second Edition

Author: Leo Porter

Publisher: Simon and Schuster

Published: 2024-10-29

Total Pages: 334

ISBN-13: 1638355770

DOWNLOAD EBOOK

See how an AI assistant can bring your ideas to life immediately! Once, to be a programmer you had to write every line of code yourself. Now tools like GitHub Copilot can instantly generate working programs based on your description in plain English. An instant bestseller, Learn AI-Assisted Python Programming has taught thousands of aspiring programmers how to write Python the easy way—with the help of AI. It’s perfect for beginners, or anyone who’s struggled with the steep learning curve of traditional programming. In Learn AI-Assisted Python Programming, Second Edition you’ll learn how to: • Write fun and useful Python applications—no programming experience required! • Use the GitHub Copilot AI coding assistant to create Python programs • Write prompts that tell Copilot exactly what to do • Read Python code and understand what it does • Test your programs to make sure they work the way you want them to • Fix code with prompt engineering or human tweaks • Apply Python creatively to help out on the job AI moves fast, and so the new edition of Learn AI-Assisted Python Programming, Second Edition is fully updated to take advantage of the latest models and AI coding tools. Written by two esteemed computer science university professors, it teaches you everything you need to start programming Python in an AI-first world. You’ll learn skills you can use to create working apps for data analysis, automating tedious tasks, and even video games. Plus, in this new edition, you’ll find groundbreaking techniques for breaking down big software projects into smaller tasks AI can easily achieve. Foreword by Beth Simon. About the technology The way people write computer programs has changed forever. Using GitHub Copilot, you describe in plain English what you want your program to do, and the AI generates it instantly. About the book This book shows you how to create and improve Python programs using AI—even if you’ve never written a line of computer code before. Spend less time on the slow, low-level programming details and instead learn how an AI assistant can bring your ideas to life immediately. As you go, you’ll even learn enough of the Python language to understand and improve what your AI assistant creates. What's inside • Prompts for working code • Tweak code manually and with AI help • AI-test your programs • Let AI handle tedious details About the reader If you can move files around on your computer and install new programs, you can learn to write useful software! About the author Dr. Leo Porter is a Teaching Professor at UC San Diego. Dr. Daniel Zingaro is an Associate Teaching Professor at the University of Toronto. The technical editor on this book was Peter Morgan. Table of Contents 1 Introducing AI-assisted programming with GitHub Copilot 2 Getting started with Copilot 3 Designing functions 4 Reading Python code: Part 1 5 Reading Python code: Part 2 6 Testing and prompt engineering 7 Problem decomposition 8 Debugging and better understanding your code 9 Automating tedious tasks 10 Making some games 11 Creating an authorship identification program 12 Future directions


Learn AI-Assisted Python Programming, Second Edition

Learn AI-Assisted Python Programming, Second Edition

Author: Leo Porter

Publisher: Simon and Schuster

Published: 2024-10-29

Total Pages: 334

ISBN-13: 1633435997

DOWNLOAD EBOOK

See how an AI assistant can bring your ideas to life immediately! Once, to be a programmer you had to write every line of code yourself. Now tools like GitHub Copilot can instantly generate working programs based on your description in plain English. An instant bestseller, Learn AI-Assisted Python Programming has taught thousands of aspiring programmers how to write Python the easy way--with the help of AI. It's perfect for beginners, or anyone who's struggled with the steep learning curve of traditional programming. In Learn AI-Assisted Python Programming, Second Edition you'll learn how to: - Write fun and useful Python applications--no programming experience required! - Use the GitHub Copilot AI coding assistant to create Python programs - Write prompts that tell Copilot exactly what to do - Read Python code and understand what it does - Test your programs to make sure they work the way you want them to - Fix code with prompt engineering or human tweaks - Apply Python creatively to help out on the job AI moves fast, and so the new edition of Learn AI-Assisted Python Programming, Second Edition is fully updated to take advantage of the latest models and AI coding tools. Written by two esteemed computer science university professors, it teaches you everything you need to start programming Python in an AI-first world. You'll learn skills you can use to create working apps for data analysis, automating tedious tasks, and even video games. Plus, in this new edition, you'll find groundbreaking techniques for breaking down big software projects into smaller tasks AI can easily achieve. Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications. About the technology AI has changed the way we write computer programs forever. You describe in plain English what you want your program to do, and AI coding assistants like Github Copilot can generate the code for you instantly! If you can use a web browser and move files around on your computer, you can create useful software. This book shows you how. About the book Learn AI-Assisted Python Programming, Second Edition teaches you how to create your own games, tools, and other simple applications using Copilot and the user-friendly Python language. You'll be amazed how quickly you can go from an idea to a working program! Authors Leo Porter and Dan Zingaro guide you step by step as you go from creating simple functions, like a small program that tells you if a password is strong enough, to writing games and tools that help you automate tedious tasks. As you go, you'll learn just enough Python to understand and improve what Copilot creates. About the reader No experience required! About the author Dr. Leo Porter is a Teaching Professor at UC San Diego. Dr. Daniel Zingaro is an Associate Teaching Professor at the University of Toronto. The technical editor on this book was Peter Morgan.


Learn AI-assisted Python Programming

Learn AI-assisted Python Programming

Author: Leo Porter

Publisher: Simon and Schuster

Published: 2024-01-09

Total Pages: 461

ISBN-13: 1638353859

DOWNLOAD EBOOK

Writing computer programs in Python just got a lot easier! Use AI-assisted coding tools like GitHub Copilot and ChatGPT to turn your ideas into applications faster than ever. AI has changed the way we write computer programs. With tools like Copilot and ChatGPT, you can describe what you want in plain English, and watch your AI assistant generate the code right before your eyes. It’s perfect for beginners, or anyone who’s struggled with the steep learning curve of traditional programming. In Learn AI-Assisted Python Programming: With GitHub Copilot and ChatGPT you’ll learn how to: Write fun and useful Python applications—no programming experience required! Use the Copilot AI coding assistant to create Python programs Write prompts that tell Copilot exactly what to do Read Python code and understand what it does Test your programs to make sure they work the way you want them to Fix code with prompt engineering or human tweaks Apply Python creatively to help out on the job Learn AI-Assisted Python Programming: With GitHub Copilot and ChatGPT is a hands-on beginner’s guide that is written by two esteemed computer science university professors. It teaches you everything you need to start programming Python in an AI-first world. You’ll hit the ground running, writing prompts that tell your AI-assistant exactly what you want your programs to do. Along the way, you’ll pick up the essentials of Python programming and practice the higher-level thinking you’ll need to create working apps for data analysis, automating tedious tasks, and even video games. Foreword by Beth Simon, Ph.D. About the technology The way people write computer programs has changed forever. Using GitHub Copilot, you describe in plain English what you want your program to do, and the AI generates it instantly. About the book This book shows you how to create and improve Python programs using AI—even if you’ve never written a line of computer code before. Spend less time on the slow, low-level programming details and instead learn how an AI assistant can bring your ideas to life immediately. As you go, you’ll even learn enough of the Python language to understand and improve what your AI assistant creates. What's inside Prompts for working code Tweak code manually and with AI help AI-test your programs Let AI handle tedious details About the reader If you can move files around on your computer and install new programs, you can learn to write useful software! About the author Dr. Leo Porter is a Teaching Professor at UC San Diego. Dr. Daniel Zingaro is an Associate Teaching Professor at the University of Toronto. The technical editor on this book was Peter Morgan. Table of Contents 1 Introducing AI-assisted programming with Copilot 2 Getting started with Copilot 3 Designing functions 4 Reading Python code – Part 1 5 Reading Python Code – Part 2 6 Testing and prompt engineering 7 Problem decomposition 8 Debugging and better understanding your code 9 Automating tedious tasks 10 Making some games 11 Future directions


How Computers Make Books

How Computers Make Books

Author: John Whitington

Publisher: Simon and Schuster

Published: 2024-06-06

Total Pages: 174

ISBN-13: 1638354383

DOWNLOAD EBOOK

Learn about computer science by exploring the fascinating journey it took to make this book! How Computers Make Books introduces what’s wonderful about computer science by showing how computers have transformed the art of publishing books. Author and publishing software developer John Whitington reveals the elegant computer science solutions invented to solve big publishing challenges. In How Computers Make Books you’ll discover: How human descriptions are translated into computer programs How a computer can understand document formatting How a program decides where to print ink on a page Why computer science is so interesting to computer scientists, and why it might interest you …and much more! How do computers represent all the different languages and letters used by humans? How do we compress a book’s worth of complex information so it can be transferred in seconds? And what exactly is a computer program? This book answers all those questions by telling the story of how it was created! About the technology Computers are part of every step in creating a book, from capturing the author’s words as a digital document to controlling how the ink gets onto the paper. How Computers Make Books introduces basic computer science concepts like file formatting, transfer, and storage, computer programming, and task automation by guiding you through the modern digital printing process. About the book This book takes you on a journey from the plain white page, weaving through typesetting, making gray images from black ink, electronic file formats, and more. It makes computer science come alive as you see how every word, illustration, and page has its own story. You’ll even learn to write your own simple programs and discover hands-on what’s so intoxicating about computer science. What's inside How human descriptions are translated into computer programs How a digital computer thinks about print documents How a program decides where to print ink on a page How the history of typesetting shows up in modern books About the reader For the curious-but-clueless about computer science—and anyone interested in how computers make books! About the author John Whitington is the founder of a company that builds software for electronic document processing. He has studied and taught Computer Science at Queens’ College, Cambridge. Technical editor on this book was Bojan Stojanovic. Table of Contents 1 Putting marks on paper 2 Letter forms 3 Storing words 4 Looking and finding 5 Typing it in 6 Saving space 7 The sums behind the screen 8 Gray areas 9 A typeface 10 Words to paragraphs 11 Out into the world


Algorithmic Thinking

Algorithmic Thinking

Author: Daniel Zingaro

Publisher: No Starch Press

Published: 2020-12-15

Total Pages: 409

ISBN-13: 1718500807

DOWNLOAD EBOOK

A hands-on, problem-based introduction to building algorithms and data structures to solve problems with a computer. Algorithmic Thinking will teach you how to solve challenging programming problems and design your own algorithms. Daniel Zingaro, a master teacher, draws his examples from world-class programming competitions like USACO and IOI. You'll learn how to classify problems, choose data structures, and identify appropriate algorithms. You'll also learn how your choice of data structure, whether a hash table, heap, or tree, can affect runtime and speed up your algorithms; and how to adopt powerful strategies like recursion, dynamic programming, and binary search to solve challenging problems. Line-by-line breakdowns of the code will teach you how to use algorithms and data structures like: The breadth-first search algorithm to find the optimal way to play a board game or find the best way to translate a book Dijkstra's algorithm to determine how many mice can exit a maze or the number of fastest routes between two locations The union-find data structure to answer questions about connections in a social network or determine who are friends or enemies The heap data structure to determine the amount of money given away in a promotion The hash-table data structure to determine whether snowflakes are unique or identify compound words in a dictionary NOTE: Each problem in this book is available on a programming-judge website. You'll find the site's URL and problem ID in the description. What's better than a free correctness check?


Artificial Intelligence with Python

Artificial Intelligence with Python

Author: Alberto Artasanchez

Publisher: Packt Publishing Ltd

Published: 2020-01-31

Total Pages: 619

ISBN-13: 1839216077

DOWNLOAD EBOOK

New edition of the bestselling guide to artificial intelligence with Python, updated to Python 3.x, with seven new chapters that cover RNNs, AI and Big Data, fundamental use cases, chatbots, and more. Key FeaturesCompletely updated and revised to Python 3.xNew chapters for AI on the cloud, recurrent neural networks, deep learning models, and feature selection and engineeringLearn more about deep learning algorithms, machine learning data pipelines, and chatbotsBook Description Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent apps and create your own applications. This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data. Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques. What you will learnUnderstand what artificial intelligence, machine learning, and data science areExplore the most common artificial intelligence use casesLearn how to build a machine learning pipelineAssimilate the basics of feature selection and feature engineeringIdentify the differences between supervised and unsupervised learningDiscover the most recent advances and tools offered for AI development in the cloudDevelop automatic speech recognition systems and chatbotsApply AI algorithms to time series dataWho this book is for The intended audience for this book is Python developers who want to build real-world Artificial Intelligence applications. Basic Python programming experience and awareness of machine learning concepts and techniques is mandatory.


Learn to Code by Solving Problems

Learn to Code by Solving Problems

Author: Daniel Zingaro

Publisher: No Starch Press

Published: 2021-06-29

Total Pages: 392

ISBN-13: 1718501331

DOWNLOAD EBOOK

Learn to Code by Solving Problems is a practical introduction to programming using Python. It uses coding-competition challenges to teach you the mechanics of coding and how to think like a savvy programmer. Computers are capable of solving almost any problem when given the right instructions. That’s where programming comes in. This beginner’s book will have you writing Python programs right away. You’ll solve interesting problems drawn from real coding competitions and build your programming skills as you go. Every chapter presents problems from coding challenge websites, where online judges test your solutions and provide targeted feedback. As you practice using core Python features, functions, and techniques, you’ll develop a clear understanding of data structures, algorithms, and other programming basics. Bonus exercises invite you to explore new concepts on your own, and multiple-choice questions encourage you to think about how each piece of code works. You’ll learn how to: Run Python code, work with strings, and use variables Write programs that make decisions Make code more efficient with while and for loops Use Python sets, lists, and dictionaries to organize, sort, and search data Design programs using functions and top-down design Create complete-search algorithms and use Big O notation to design more efficient code By the end of the book, you’ll not only be proficient in Python, but you’ll also understand how to think through problems and tackle them with code. Programming languages come and go, but this book gives you the lasting foundation you need to start thinking like a programmer.


Artificial Intelligence with Python

Artificial Intelligence with Python

Author: Prateek Joshi

Publisher: Packt Publishing Ltd

Published: 2017-01-27

Total Pages: 437

ISBN-13: 1786469677

DOWNLOAD EBOOK

Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.


Grokking Data Structures

Grokking Data Structures

Author: Marcello La Rocca

Publisher: Simon and Schuster

Published: 2024-08-06

Total Pages: 278

ISBN-13: 1633436993

DOWNLOAD EBOOK

Don’t be perplexed by data structures! This fun, friendly, and fully illustrated guide makes it easy to learn useful data structures you’ll put to work every day. Grokking Data Structures makes it a breeze to learn the most useful day-to-day data structures. You’ll follow a steady learning path from absolute basics to advanced concepts, all illustrated with fun examples, engaging industry stories, and hundreds of graphics and cartoons. In Grokking Data Structures you’ll learn how to: • Understand the most important and widely used data structures • Identify use cases where data structures make the biggest difference • Pick the best data structure solution for a coding challenge • Understand the tradeoffs of data structures and avoid catastrophes • Implement basic data collections like arrays, linked lists, stacks, and priority queues • Use trees and binary search trees (BSTs) to organize data • Use graphs to model relationships and learn about complex data • Efficiently search by key using hash tables and hashing functions • Reason about time and memory requirements of operations on data structures Grokking Data Structures carefully guides you from the most basic data structures like arrays or linked lists all the way to powerful structures like graphs. It’s perfect for beginners, and you won’t need anything more than high school math to get started. Each data structure you encounter comes with its own complete Python implementation so you can start experimenting with what you learn right away. Foreword by Daniel Zingaro. Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications. About the technology Data structures are vital for shaping and handling your data organization. They’re also an important part of most IT job interviews! Whether you’re new to data structures or just dusting off what you learned in school, this book will get you up to speed fast with no advanced math, abstract theory, or complicated proofs. About the book Grokking Data Structures introduces common and useful data structures that every developer needs to know. Real-world examples show you how data structures are used in practice, from making your searches faster to handling triage in an emergency room. You’ll love the fun cartoons, insightful stories, and useful Python code samples that make data structures come alive. And unlike jargon-laden academic texts, this book is easy-to-read and practical. What's inside • Fast searches using hash tables • Trees and binary search trees (BSTs) to organize data • Use graphs to model complex data • The best data structures for a coding challenge About the reader For readers who know the basics of Python. A perfect companion to Grokking Algorithms! About the author Marcello La Rocca is a research scientist and a full-stack engineer. He has contributed to large-scale web applications and machine learning infrastructure at Twitter, Microsoft, and Apple. The technical editor on this book was Beau Carnes. Table of Contents 1 Introducing data structures: Why you should learn about data structures 2 Static arrays: Building your first data structure 3 Sorted arrays: Searching faster, at a price 4 Big-O notation: A framework for measuring algorithm efficiency 5 Dynamic arrays: Handling dynamically sized datasets 6 Linked lists: A flexible dynamic collection 7 Abstract data types: Designing the simplest container—the bag 8 Stacks: Piling up data before processing it 9 Queues: Keeping information in the same order as it arrives 10 Priority queues and heaps: Handling data according to its priority 11 Binary search trees: A balanced container 12 Dictionaries and hash tables: How to build and use associative arrays 13 Graphs: Learning how to model complex relationships in data


AI Assistants

AI Assistants

Author: Roberto Pieraccini

Publisher: MIT Press

Published: 2021-09-07

Total Pages: 290

ISBN-13: 0262542552

DOWNLOAD EBOOK

An accessible explanation of the technologies that enable such popular voice-interactive applications as Alexa, Siri, and Google Assistant. Have you talked to a machine lately? Asked Alexa to play a song, asked Siri to call a friend, asked Google Assistant to make a shopping list? This volume in the MIT Press Essential Knowledge series offers a nontechnical and accessible explanation of the technologies that enable these popular devices. Roberto Pieraccini, drawing on more than thirty years of experience at companies including Bell Labs, IBM, and Google, describes the developments in such fields as artificial intelligence, machine learning, speech recognition, and natural language understanding that allow us to outsource tasks to our ubiquitous virtual assistants. Pieraccini describes the software components that enable spoken communication between humans and computers, and explains why it's so difficult to build machines that understand humans. He explains speech recognition technology; problems in extracting meaning from utterances in order to execute a request; language and speech generation; the dialog manager module; and interactions with social assistants and robots. Finally, he considers the next big challenge in the development of virtual assistants: building in more intelligence--enabling them to do more than communicate in natural language and endowing them with the capacity to know us better, predict our needs more accurately, and perform complex tasks with ease.