The evolution operator for the Lax-Phillips scattering system is an isometric representation of the Cuntz algebra, while the nonnegative time axis for the conservative, linear system is the free semigroup on $d$ letters. This title presents a multivariable setting for Lax-Phillips scattering and for conservative, discrete-time, linear systems.
This volume contains a selection of papers, from experts in the area, on multidimensional operator theory. Topics considered include the non-commutative case, function theory in the polydisk, hyponormal operators, hyperanalytic functions, and holomorphic deformations of linear differential equations. Operator Theory, Systems Theory and Scattering Theory will be of interest to a wide audience of pure and applied mathematicians, electrical engineers and theoretical physicists.
This volume is devoted to Joseph A. (Joe) Ball’s contributions to operator theory and its applications and in celebration of his seventieth birthday. Joe Ball’s career spans over four and a half decades, starting with his work on model theory and related topics for non-contractions and operators on multiply connected domains. Later on, more applied operator theory themes appeared in his work, involving factorization and interpolation for operator-valued functions, with extensive applications in system and control theory. He has worked on nonlinear control, time-varying systems and, more recently, on multidimensional systems and noncommutative H∞-theory on the unit ball and polydisk, and more general domains, and these are only the main themes in his vast oeuvre. Fourteen research papers constitute the core of this volume, written by mathematicians who have collaborated with Joe or have been influenced by his vast mathematical work. A curriculum vitae, a publications list and a list of Joe Ball’s PhD students are included in this volume, as well as personal reminiscences by colleagues and friends. Contributions by Yu. M. Arlinskii, S. Hassi, M. Augat, J. W. Helton, I. Klep, S. McCullough, S. Balasubramanian, U. Wijesooriya, N. Cohen, Q. Fang, S. Gorai, J. Sarkar, G. J. Groenewald, S. ter Horst, J. Jaftha, A. C. M. Ran, M.A. Kaashoek, F. van Schagen, A. Kheifets, Z. A. Lykova, N. J. Young, A. E. Ajibo, R. T. W. Martin, A. Ramanantoanina, M.-J. Y. Ou, H. J. Woerdeman, A. van der Schaft, A. Tannenbaum, T. T. Georgiou, J. O. Deasy and L. Norton.
The state space method developed in the last decades allows us to study the theory of linear systems by using tools from the theory of linear operators; conversely, it had a strong influence on operator theory introducing new questions and topics. The present volume contains a collection of essays representing some of the recent advances in the state space method. Methods covered include noncommutative systems theory, new aspects of the theory of discrete systems, discrete analogs of canonical systems, and new applications to the theory of Bezoutiants and convolution equations. The articles in the volume will be of interest to pure and applied mathematicians, electrical engineers and theoretical physicists.
Contains the proceedings of the International Workshop on Operator Theory and Applications (IWOTA 2006) held at Seoul National University, Seoul, Korea, from July 31 to August 3, 2006. This volume contains sixteen research papers which reflect developments in operator theory and applications.
This book contains the proceedings of the 23rd International Workshop on Operator Theory and its Applications (IWOTA 2012), which was held at the University of New South Wales (Sydney, Australia) from 16 July to 20 July 2012. It includes twelve articles presenting both surveys of current research in operator theory and original results.
This volume contains the proceedings of the eighteenth International Workshop on Operator Theory and Applications (IWOTA), hosted by the Unit for Business Mathematics and Informatics of North-West University, Potchefstroom, South Africa from July 3 to 6, 2007. The conference (as well as these proceedings) was dedicated to Professors Joseph A. Ball and Marinus M. Kaashoek on the occasion of their 60th and 70th birthdays, respectively. This conference had a particular focus on Von Neumann algebras at the interface of operator theory with functional analysis and on applications of operator theory to differential equations.
The notions of positive functions and of reproducing kernel Hilbert spaces play an important role in various fields of mathematics, such as stochastic processes, linear systems theory, operator theory, and the theory of analytic functions. Also they are relevant for many applications, for example to statistical learning theory and pattern recognition. The present volume contains a selection of papers which deal with different aspects of reproducing kernel Hilbert spaces. Topics considered include one complex variable theory, differential operators, the theory of self-similar systems, several complex variables, and the non-commutative case. The book is of interest to a wide audience of pure and applied mathematicians, electrical engineers and theoretical physicists.