Lattice Methods for Multiple Integration

Lattice Methods for Multiple Integration

Author: I. H. Sloan

Publisher: Oxford University Press

Published: 1994

Total Pages: 256

ISBN-13: 9780198534723

DOWNLOAD EBOOK

This is the first book devoted to lattice methods, a recently developed way of calculating multiple integrals in many variables. Multiple integrals of this kind arise in fields such as quantum physics and chemistry, statistical mechanics, Bayesian statistics and many others. Lattice methods are an effective tool when the number of integrals are large. The book begins with a review of existing methods before presenting lattice theory in a thorough, self-contained manner, with numerous illustrations and examples. Group and number theory are included, but the treatment is such that no prior knowledge is needed. Not only the theory but the practical implementation of lattice methods is covered. An algorithm is presented alongside tables not available elsewhere, which together allow the practical evaluation of multiple integrals in many variables. Most importantly, the algorithm produces an error estimate in a very efficient manner. The book also provides a fast track for readers wanting to move rapidly to using lattice methods in practical calculations. It concludes with extensive numerical tests which compare lattice methods with other methods, such as the Monte Carlo.


Methods of Numerical Integration

Methods of Numerical Integration

Author: Philip J. Davis

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 628

ISBN-13: 1483264289

DOWNLOAD EBOOK

Methods of Numerical Integration, Second Edition describes the theoretical and practical aspects of major methods of numerical integration. Numerical integration is the study of how the numerical value of an integral can be found. This book contains six chapters and begins with a discussion of the basic principles and limitations of numerical integration. The succeeding chapters present the approximate integration rules and formulas over finite and infinite intervals. These topics are followed by a review of error analysis and estimation, as well as the application of functional analysis to numerical integration. A chapter describes the approximate integration in two or more dimensions. The final chapter looks into the goals and processes of automatic integration, with particular attention to the application of Tschebyscheff polynomials. This book will be of great value to theoreticians and computer programmers.


Numerical Integration

Numerical Integration

Author: T.O. Espelid

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 363

ISBN-13: 9401126461

DOWNLOAD EBOOK

This volume contains refereed papers and extended abstracts of papers presented at the NATO Advanced Research Workshop entitled 'Numerical Integration: Recent Develop ments, Software and Applications', held at the University of Bergen, Bergen, Norway, June 17-21,1991. The Workshop was attended by thirty-eight scientists. A total of eight NATO countries were represented. Eleven invited lectures and twenty-three contributed lectures were presented, of which twenty-five appear in full in this volume, together with three extended abstracts and one note. The main focus of the workshop was to survey recent progress in the theory of methods for the calculation of integrals and show how the theoretical results have been used in software development and in practical applications. The papers in this volume fall into four broad categories: numerical integration rules, numerical integration error analysis, numerical integration applications and numerical integration algorithms and software. It is five years since the last workshop of this nature was held, at Dalhousie University in Halifax, Canada, in 1986. Recent theoretical developments have mostly occurred in the area of integration rule construction. For polynomial integrating rules, invariant theory and ideal theory have been used to provide lower bounds on the numbers of points for different types of multidimensional rules, and to help in structuring the nonlinear systems which must be solved to determine the points and weights for the rules. Many new optimal or near optimal rules have been found for a variety of integration regions using these techniques.


Lattice Methods for Quantum Chromodynamics

Lattice Methods for Quantum Chromodynamics

Author: Thomas DeGrand

Publisher: World Scientific

Published: 2006

Total Pages: 363

ISBN-13: 9812773983

DOWNLOAD EBOOK

At a time of robust worldwide debates on globalization, this compact volume shows: how successful each of the East Asian economies have been in harnessing globalization by appropriate and alternative means to catch up with the advanced economies; and what implications can be drawn to assess Chinese economic growth in context. The essays in this book include supporting notes to review effectively the highlights of the development of East Asia, over the six decades after World War II: why the region has performed so well economically relative to the rest of the developing world; which are the most challenging limitations to be addressed; and several sensational controversies in the development economics literature to be sensibly resolved.


Random Number Generation and Quasi-Monte Carlo Methods

Random Number Generation and Quasi-Monte Carlo Methods

Author: Harald Niederreiter

Publisher: SIAM

Published: 1992-01-01

Total Pages: 247

ISBN-13: 9781611970081

DOWNLOAD EBOOK

Tremendous progress has taken place in the related areas of uniform pseudorandom number generation and quasi-Monte Carlo methods in the last five years. This volume contains recent important work in these two areas, and stresses the interplay between them. Some developments contained here have never before appeared in book form. Includes the discussion of the integrated treatment of pseudorandom numbers and quasi-Monte Carlo methods; the systematic development of the theory of lattice rules and the theory of nets and (t,s)-sequences; the construction of new and better low-discrepancy point sets and sequences; Nonlinear congruential methods; the initiation of a systematic study of methods for pseudorandom vector generation; and shift-register pseudorandom numbers. Based on a series of 10 lectures presented by the author at a CBMS-NSF Regional Conference at the University of Alaska at Fairbanks in 1990 to a selected group of researchers, this volume includes background material to make the information more accessible to nonspecialists.


The Handbook of Integration

The Handbook of Integration

Author: Daniel Zwillinger

Publisher: CRC Press

Published: 1992-11-02

Total Pages: 385

ISBN-13: 1439865841

DOWNLOAD EBOOK

This book is a compilation of the most important and widely applicable methods for evaluating and approximating integrals. It is an indispensable time saver for engineers and scientists needing to evaluate integrals in their work. From the table of contents: - Applications of Integration - Concepts and Definitions - Exact Analytical Methods - Appro