Lattice Gauge Theories: An Introduction (Fourth Edition)

Lattice Gauge Theories: An Introduction (Fourth Edition)

Author: Heinz J Rothe

Publisher: World Scientific Publishing Company

Published: 2012-03-14

Total Pages: 628

ISBN-13: 9813100621

DOWNLOAD EBOOK

This book provides a broad introduction to gauge field theories formulated on a space-time lattice, and in particular of QCD. It serves as a textbook for advanced graduate students, and also provides the reader with the necessary analytical and numerical techniques to carry out research on his own. Although the analytic calculations are sometimes quite demanding and go beyond an introduction, they are discussed in sufficient detail, so that the reader can fill in the missing steps. The book also introduces the reader to interesting problems which are currently under intensive investigation. Whenever possible, the main ideas are exemplified in simple models, before extending them to realistic theories. Special emphasis is placed on numerical results obtained from pioneering work. These are displayed in a great number of figures. Beyond the necessary amendments and slight extensions of some sections in the third edition, the fourth edition includes an expanded section on Calorons — a subject which has been under intensive investigation during the last twelve years.


Lattice Gauge Theories

Lattice Gauge Theories

Author: Heinz J. Rothe

Publisher: World Scientific

Published: 2005

Total Pages: 610

ISBN-13: 9812560629

DOWNLOAD EBOOK

- Wherever possible simple examples, which illustrate the main ideas, are provided before embarking on the actual discussion of the problem of interest - The book introduces the readers to problems of great current interest, like instantons, calorons, vortices, magnetic monopoles - QCD at finite temperature is discussed at great length, both in perturbation theory and in Monte Carlo simulations - The book contains many figures showing numerical results of pioneering work


Lattice Gauge Theories: An Introduction

Lattice Gauge Theories: An Introduction

Author: Heinz J Rothe

Publisher: World Scientific

Published: 1992-01-29

Total Pages: 397

ISBN-13: 9814602302

DOWNLOAD EBOOK

This book introduces a large number of topics in lattice gauge theories, including analytical as well as numerical methods. It provides young physicists with the theoretical background and basic computational tools in order to be able to follow the extensive literature on the subject, and to carry out research on their own. Whenever possible, the basic ideas and technical inputs are demonstrated in simple examples, so as to avoid diverting the readers' attention from the main line of thought. Sufficient technical details are however given so that he can fill in the remaining details with the help of the cited literature without too much effort.This volume is designed for graduate students in theoretical elementary particle physics or statistical mechanics with a basic knowledge in Quantum Field Theory.


Field Theory: A Path Integral Approach (Third Edition)

Field Theory: A Path Integral Approach (Third Edition)

Author: Ashok Das

Publisher: World Scientific

Published: 2019-02-22

Total Pages: 489

ISBN-13: 9811202567

DOWNLOAD EBOOK

This unique book describes quantum field theory completely within the context of path integrals. With its utility in a variety of fields in physics, the subject matter is primarily developed within the context of quantum mechanics before going into specialized areas.All the existing chapters of the previous edition have been expanded for more clarity. The chapter on anomalies and the Schwinger model has been completely rewritten for better logical clarity. Two new chapters have been added at the request of students and faculty worldwide. The first describes Schwinger's proper time method with simple examples both at zero and at finite temperature while the second develops the idea of zeta function regularization with simple examples.This latest edition is a comprehensive and much expanded version of the original text.


Quantum Chromodynamics on the Lattice

Quantum Chromodynamics on the Lattice

Author: Christof Gattringer

Publisher: Springer

Published: 2009-10-03

Total Pages: 352

ISBN-13: 3642018505

DOWNLOAD EBOOK

This introduction to quantum chromodynamics presents the basic concepts and calculations in a clear and didactic style accessible to those new to the field. Readers will find useful methods for obtaining numerical results, including pure gauge theory and quenched spectroscopy.


Encyclopedia of Parallel Computing

Encyclopedia of Parallel Computing

Author: David Padua

Publisher: Springer Science & Business Media

Published: 2014-07-08

Total Pages: 2211

ISBN-13: 038709766X

DOWNLOAD EBOOK

Containing over 300 entries in an A-Z format, the Encyclopedia of Parallel Computing provides easy, intuitive access to relevant information for professionals and researchers seeking access to any aspect within the broad field of parallel computing. Topics for this comprehensive reference were selected, written, and peer-reviewed by an international pool of distinguished researchers in the field. The Encyclopedia is broad in scope, covering machine organization, programming languages, algorithms, and applications. Within each area, concepts, designs, and specific implementations are presented. The highly-structured essays in this work comprise synonyms, a definition and discussion of the topic, bibliographies, and links to related literature. Extensive cross-references to other entries within the Encyclopedia support efficient, user-friendly searchers for immediate access to useful information. Key concepts presented in the Encyclopedia of Parallel Computing include; laws and metrics; specific numerical and non-numerical algorithms; asynchronous algorithms; libraries of subroutines; benchmark suites; applications; sequential consistency and cache coherency; machine classes such as clusters, shared-memory multiprocessors, special-purpose machines and dataflow machines; specific machines such as Cray supercomputers, IBM’s cell processor and Intel’s multicore machines; race detection and auto parallelization; parallel programming languages, synchronization primitives, collective operations, message passing libraries, checkpointing, and operating systems. Topics covered: Speedup, Efficiency, Isoefficiency, Redundancy, Amdahls law, Computer Architecture Concepts, Parallel Machine Designs, Benmarks, Parallel Programming concepts & design, Algorithms, Parallel applications. This authoritative reference will be published in two formats: print and online. The online edition features hyperlinks to cross-references and to additional significant research. Related Subjects: supercomputing, high-performance computing, distributed computing


Foundations Of Quantum Chromodynamics: An Introduction To Perturbative Methods In Gauge Theories (3rd Edition)

Foundations Of Quantum Chromodynamics: An Introduction To Perturbative Methods In Gauge Theories (3rd Edition)

Author: Taizo Muta

Publisher: World Scientific Publishing Company

Published: 2009-09-30

Total Pages: 431

ISBN-13: 9813101334

DOWNLOAD EBOOK

This volume develops the techniques of perturbative QCD in great pedagogical detail starting with field theory. Aside from extensive treatments of the renormalization group technique, the operator product expansion formalism and their applications to short-distance reactions, this book provides a comprehensive introduction to gauge theories. Examples and exercises are provided to amplify the discussions on important topics. This is an ideal textbook on the subject of quantum chromodynamics and is essential for researchers and graduate students in high energy physics, nuclear physics and mathematical physics.


Lattice Gauge Theories: An Introduction (Second Edition)

Lattice Gauge Theories: An Introduction (Second Edition)

Author: Heinz J Rothe

Publisher: World Scientific Publishing Company

Published: 1997-06-09

Total Pages: 530

ISBN-13: 9813105046

DOWNLOAD EBOOK

This book introduces the reader to an area of elementary particle physics which has been the subject of intensive research in the past two decades. It provides graduate students with the basic theoretical background on quantum gauge field theories formulated on a space-time lattice, and with the computational tools for carrying out research in this field. The book is a substantially extended version of the first edition which appeared in 1992. Much effort has been invested to present the material in a transparent way, and in exemplifying subtle points in simple models. The material covered should enable the reader to follow the vast literature on the subject without too much difficulties. Hopefully the book will motivate young physicists to carry out research in this area of elementary particle physics.


Gauge Theories in Particle Physics, Third Edition - 2 volume set

Gauge Theories in Particle Physics, Third Edition - 2 volume set

Author: Ian J.R. Aitchison

Publisher: CRC Press

Published: 2004-01-01

Total Pages: 474

ISBN-13: 9780750309820

DOWNLOAD EBOOK

This two-volume set provides an accessible, practical, and comprehensive introduction to the three gauge theories of the standard model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the electroweak theory. For each of them, the authors provide a thorough discussion of the main conceptual points, a detailed exposition of many practical calculations of physical quantities, and a comparison of these quantitative predictions with experimental results. For this third edition, much has been rewritten to reflect developments over the last decade, both in the curricula of university courses and in particle physics research. On the one hand, substantial new material has been introduced that is intended for use in undergraduate physics courses. New introductory chapters provide a precise historical account of the properties of quarks and leptons and a qualitative overview of the quantum field description of their interactions, at a level appropriate to third year courses. The chapter on relativistic quantum mechanics has been enlarged and is supplemented by additional sections on scattering theory and Green functions, in a form appropriate to fourth-year courses. On the other hand, since precision experiments now test the theories beyond lowest order in perturbation theory, an understanding of the data requires a more sophisticated knowledge of quantum field theory, including ideas of renormalization. The treatment of quantum field theory has therefore been considerably extended to provide a uniquely accessible and self-contained introduction to quantum field dynamics as described by Feynman graphs. The level is suitable for advanced fourth-year undergraduates and first-year graduates. These developments are all contained in the first volume, which ends with a discussion of higher order corrections in QED. The second volume is devoted to the non-Abelian gauge theories of QCD and the electroweak theory. As in the first two editions, emphasis is placed throughout on developing realistic calculations from a secure physical and conceptual basis.


Recent Developments in Gauge Theories

Recent Developments in Gauge Theories

Author: G. 't Hooft

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 437

ISBN-13: 1468475711

DOWNLOAD EBOOK

Almost all theories of fundamental interactions are nowadays based on the gauge concept. Starting with the historical example of quantum electrodynamics, we have been led to the successful unified gauge theory of weak and electromagnetic interactions, and finally to a non abelian gauge theory of strong interactions with the notion of permanently confined quarks. The. early theoretical work on gauge theories was devoted to proofs of renormalizability, investigation of short distance behaviour, the discovery of asymptotic freedom, etc . . , aspects which were accessible to tools extrapolated from renormalised perturbation theory. The second phase of the subject is concerned with the problem of quark confinement which necessitates a non-perturbative understanding of gauge theories. This phase has so far been marked by the introduc tion of ideas from geometry, topology and statistical mechanics in particular the theory of phase transitions. The 1979 Cargese Institute on "Recent Developments on Gauge Theories" was devoted to a thorough discussion of these non-perturbative, global aspects of non-abelian gauge theories. In the lectures and seminars reproduced in this volume the reader wilf find detailed reports on most of the important developments of recent times on non perturbative gauge fields by some of the leading experts and innovators in this field. Aside from lectures on gauge fields proper, there were lectures on gauge field concepts in condensed matter physics and lectures by mathematicians on global aspects of the calculus of variations, its relation to geometry and topology, and related topics.