Laser Spectroscopy of Solids II

Laser Spectroscopy of Solids II

Author: William M. Yen

Publisher: Springer Science & Business Media

Published: 2006-01-21

Total Pages: 319

ISBN-13: 3540459391

DOWNLOAD EBOOK

Laser-based optical spectroscopies are powerful and versatile techniques that are continuing to evolve and find new applications. This book presents reviews of recent progress in our understanding of the spectra and dynamical processes of optically excited states of condensed matter, focusing on the advances made possible by the application of laser-based optical spectroscopies. Reviews are given of the optical properties of crystalline and amorphous semiconducting materials and structures, the properties of defect centers in insulators, two-photon nonlinear processes in insulators, optical energy diffusion in inorganic materials, and relaxation in organic materials. The individual chapters emphasize the methodology common to the various investigations. The volume is designed to be suitable as an introduction to applied laser spectroscopy of solids, as well as providing an update on the status of the field.


Laser Spectroscopy of Solids II

Laser Spectroscopy of Solids II

Author: William M. Yen

Publisher: Springer

Published: 2014-04-17

Total Pages: 309

ISBN-13: 9783662309292

DOWNLOAD EBOOK

Laser-based optical spectroscopies are powerful and versatile techniques that are continuing to evolve and find new applications. This book presents reviews of recent progress in our understanding of the spectra and dynamical processes of optically excited states of condensed matter, focusing on the advances made possible by the application of laser-based optical spectroscopies. Reviews are given of the optical properties of crystalline and amorphous semiconducting materials and structures, the properties of defect centers in insulators, two-photon nonlinear processes in insulators, optical energy diffusion in inorganic materials, and relaxation in organic materials. The individual chapters emphasize the methodology common to the various investigations. The volume is designed to be suitable as an introduction to applied laser spectroscopy of solids, as well as providing an update on the status of the field.


Optical Interactions In Solids (2nd Edition)

Optical Interactions In Solids (2nd Edition)

Author: Baldassare Di Bartolo

Publisher: World Scientific Publishing Company

Published: 2010-06-30

Total Pages: 631

ISBN-13: 9813107839

DOWNLOAD EBOOK

Optical Interactions in Solids presents an extensive and unified treatment of the basic principles of the optical properties of solids. It provides a theoretical background to workers in the field of laser physics and absorption and fluorescence spectroscopy of solid state materials. The book is a comprehensive coverage of the subject and is systematically and didactically organized. The level of presentation is such that it will benefit and interest both advanced students and research workers. Group theory — which is useful throughout — is introduced early in the book advocating the scientific community to overcome the reluctance to employ this powerful method. Consistent emphasis is given throughout the book to the relevance of symmetry and to detailed calculations. Different subjects as various as quantum theory of radiation field, thermal vibrations of molecules and crystals and covalent bonding are brought together in a unified treatment which requires knowledge of all these topics and this points to the interpretation of the spectral properties of solids. The content of this work could be used as a two term graduate course in solid state spectroscopy.br>


Introduction to Laser Spectroscopy

Introduction to Laser Spectroscopy

Author: Halina Abramczyk

Publisher: Elsevier

Published: 2005-05-06

Total Pages: 331

ISBN-13: 0080455255

DOWNLOAD EBOOK

Introduction to Laser Spectroscopy is a well-written, easy-to-read guide to understanding the fundamentals of lasers, experimental methods of modern laser spectroscopy and applications. It provides a solid grounding in the fundamentals of many aspects of laser physics, nonlinear optics, and molecular spectroscopy. In addition, by comprehensively combining theory and experimental techniques it explicates a variety of issues that are essential to understanding broad areas of physical, chemical and biological science. Topics include key laser types - gas, solid state, and semiconductor - as well as the rapidly evolving field of ultrashort laser phenomena for femtochemistry applications. The examples used are well researched and clearly presented. Introduction to Laser Spectroscopy is strongly recommended to newcomers as well as researchers in physics, engineering, chemistry and biology.* A comprehensive course that combines theory and practice* Includes a systematic and comprehensive description for key laser types* Written for students and professionals looking to gain a thorough understanding of modern laser spectroscopy


Laser Spectroscopy of Solids

Laser Spectroscopy of Solids

Author: W. M. Yen

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 321

ISBN-13: 3662122138

DOWNLOAD EBOOK

In this volume we have attempted to present a concise survey of the spectroscopic properties of insulators as derived from the application of tunable laser spectro scopic techniques. As has been the case in gaseous atomic spectroscopy, the use of tunable lasers has allowed the extension and the refmement of optical measure ments in the condensed phases to unprecedented resolutions in the frequency and temporal domains. In turn, this firmer base of empirical fmdings has led to a more sophisticated theoretical understanding of the spectroscopy of optically excited states with major modifications being apparent in the area of their dynamic be havior. Yet the revivalistic nature of these advances implies that additional advan ces are to be expected as the techniques and developments outlined in this volume are put to widespread use. Regardless, it is our hope and that of our distinguished colleagues in this venture that the reviews presented here will be useful to neo phytes and veterans to this field alike - to the former as a laissez-passer into solid-state spectroscopy, to the latter as a useful synopsis and reference of recent developments. We have also attempted to expose the reader to the concept that optically active materials, be they organic or inorganic, as universality would require, be have in a like manner and, though terminology may vary in detail, the outline and general features of all insulators remain constant.


Optical Characterization of Solids

Optical Characterization of Solids

Author: D. Dragoman

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 462

ISBN-13: 3662048701

DOWNLOAD EBOOK

Gives a comprehensive and coherent account of the basic methods to characterize a solid through its interaction with an electromagnetic field.


Solid-State Spectroscopy

Solid-State Spectroscopy

Author: Hans Kuzmany

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 455

ISBN-13: 3662035944

DOWNLOAD EBOOK

This text is an introductory compilation of basic concepts, methods and applications in the field of spectroscopy. It discusses new radiation sources such as lasers and synchrotrons and describes the linear response together with the basic principles and the technical background for various scattering experiments.


Basics of Laser Physics

Basics of Laser Physics

Author: Karl F. Renk

Publisher: Springer Science & Business Media

Published: 2012-02-09

Total Pages: 618

ISBN-13: 3642235654

DOWNLOAD EBOOK

Basics of Laser Physics provides an introductory presentation of the field of all types of lasers. It contains a general description of the laser, a theoretical treatment and a characterization of its operation as it deals with gas, solid state, free-electron and semiconductor lasers and, furthermore, with a few laser related topics. The different subjects are connected to each other by the central principle of the laser, namely, that it is a self-oscillating system. Special emphasis is put on a uniform treatment of gas and solid-state lasers, on the one hand, and semiconductor lasers, on the other hand. The discussions and the treatment of equations are presented in a way that a reader can immediately follow. The book addresses undergraduate and graduate students of science and engineering. Not only should it enable instructors to prepare their lectures, but it can be helpful to students for preparing for an examination.