Large Scale Linear and Integer Optimization: A Unified Approach

Large Scale Linear and Integer Optimization: A Unified Approach

Author: Richard Kipp Martin

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 739

ISBN-13: 1461549752

DOWNLOAD EBOOK

This is a textbook about linear and integer linear optimization. There is a growing need in industries such as airline, trucking, and financial engineering to solve very large linear and integer linear optimization problems. Building these models requires uniquely trained individuals. Not only must they have a thorough understanding of the theory behind mathematical programming, they must have substantial knowledge of how to solve very large models in today's computing environment. The major goal of the book is to develop the theory of linear and integer linear optimization in a unified manner and then demonstrate how to use this theory in a modern computing environment to solve very large real world problems. After presenting introductory material in Part I, Part II of this book is de voted to the theory of linear and integer linear optimization. This theory is developed using two simple, but unifying ideas: projection and inverse projec tion. Through projection we take a system of linear inequalities and replace some of the variables with additional linear inequalities. Inverse projection, the dual of this process, involves replacing linear inequalities with additional variables. Fundamental results such as weak and strong duality, theorems of the alternative, complementary slackness, sensitivity analysis, finite basis the orems, etc. are all explained using projection or inverse projection. Indeed, a unique feature of this book is that these fundamental results are developed and explained before the simplex and interior point algorithms are presented.


Stochastic Decomposition

Stochastic Decomposition

Author: Julia L. Higle

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 237

ISBN-13: 1461541158

DOWNLOAD EBOOK

Motivation Stochastic Linear Programming with recourse represents one of the more widely applicable models for incorporating uncertainty within in which the SLP optimization models. There are several arenas model is appropriate, and such models have found applications in air line yield management, capacity planning, electric power generation planning, financial planning, logistics, telecommunications network planning, and many more. In some of these applications, modelers represent uncertainty in terms of only a few seenarios and formulate a large scale linear program which is then solved using LP software. However, there are many applications, such as the telecommunications planning problem discussed in this book, where a handful of seenarios do not capture variability well enough to provide a reasonable model of the actual decision-making problem. Problems of this type easily exceed the capabilities of LP software by several orders of magnitude. Their solution requires the use of algorithmic methods that exploit the structure of the SLP model in a manner that will accommodate large scale applications.


Large Scale Optimization in Supply Chains and Smart Manufacturing

Large Scale Optimization in Supply Chains and Smart Manufacturing

Author: Jesús M. Velásquez-Bermúdez

Publisher: Springer

Published: 2020-09-20

Total Pages: 0

ISBN-13: 9783030227906

DOWNLOAD EBOOK

In this book, theory of large scale optimization is introduced with case studies of real-world problems and applications of structured mathematical modeling. The large scale optimization methods are represented by various theories such as Benders’ decomposition, logic-based Benders’ decomposition, Lagrangian relaxation, Dantzig –Wolfe decomposition, multi-tree decomposition, Van Roy’ cross decomposition and parallel decomposition for mathematical programs such as mixed integer nonlinear programming and stochastic programming. Case studies of large scale optimization in supply chain management, smart manufacturing, and Industry 4.0 are investigated with efficient implementation for real-time solutions. The features of case studies cover a wide range of fields including the Internet of things, advanced transportation systems, energy management, supply chain networks, service systems, operations management, risk management, and financial and sales management. Instructors, graduate students, researchers, and practitioners, would benefit from this book finding the applicability of large scale optimization in asynchronous parallel optimization, real-time distributed network, and optimizing the knowledge-based expert system for convex and non-convex problems.


Online Optimization of Large Scale Systems

Online Optimization of Large Scale Systems

Author: Martin Grötschel

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 789

ISBN-13: 3662043319

DOWNLOAD EBOOK

In its thousands of years of history, mathematics has made an extraordinary ca reer. It started from rules for bookkeeping and computation of areas to become the language of science. Its potential for decision support was fully recognized in the twentieth century only, vitally aided by the evolution of computing and communi cation technology. Mathematical optimization, in particular, has developed into a powerful machinery to help planners. Whether costs are to be reduced, profits to be maximized, or scarce resources to be used wisely, optimization methods are available to guide decision making. Opti mization is particularly strong if precise models of real phenomena and data of high quality are at hand - often yielding reliable automated control and decision proce dures. But what, if the models are soft and not all data are around? Can mathematics help as well? This book addresses such issues, e. g. , problems of the following type: - An elevator cannot know all transportation requests in advance. In which order should it serve the passengers? - Wing profiles of aircrafts influence the fuel consumption. Is it possible to con tinuously adapt the shape of a wing during the flight under rapidly changing conditions? - Robots are designed to accomplish specific tasks as efficiently as possible. But what if a robot navigates in an unknown environment? - Energy demand changes quickly and is not easily predictable over time. Some types of power plants can only react slowly.


An Introduction to Linear Programming and Game Theory

An Introduction to Linear Programming and Game Theory

Author: Paul R. Thie

Publisher: John Wiley & Sons

Published: 2011-09-15

Total Pages: 476

ISBN-13: 1118165454

DOWNLOAD EBOOK

Praise for the Second Edition: "This is quite a well-done book: very tightly organized, better-than-average exposition, and numerous examples, illustrations, and applications." —Mathematical Reviews of the American Mathematical Society An Introduction to Linear Programming and Game Theory, Third Edition presents a rigorous, yet accessible, introduction to the theoretical concepts and computational techniques of linear programming and game theory. Now with more extensive modeling exercises and detailed integer programming examples, this book uniquely illustrates how mathematics can be used in real-world applications in the social, life, and managerial sciences, providing readers with the opportunity to develop and apply their analytical abilities when solving realistic problems. This Third Edition addresses various new topics and improvements in the field of mathematical programming, and it also presents two software programs, LP Assistant and the Solver add-in for Microsoft Office Excel, for solving linear programming problems. LP Assistant, developed by coauthor Gerard Keough, allows readers to perform the basic steps of the algorithms provided in the book and is freely available via the book's related Web site. The use of the sensitivity analysis report and integer programming algorithm from the Solver add-in for Microsoft Office Excel is introduced so readers can solve the book's linear and integer programming problems. A detailed appendix contains instructions for the use of both applications. Additional features of the Third Edition include: A discussion of sensitivity analysis for the two-variable problem, along with new examples demonstrating integer programming, non-linear programming, and make vs. buy models Revised proofs and a discussion on the relevance and solution of the dual problem A section on developing an example in Data Envelopment Analysis An outline of the proof of John Nash's theorem on the existence of equilibrium strategy pairs for non-cooperative, non-zero-sum games Providing a complete mathematical development of all presented concepts and examples, Introduction to Linear Programming and Game Theory, Third Edition is an ideal text for linear programming and mathematical modeling courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for professionals who use game theory in business, economics, and management science.


Algorithms and Model Formulations in Mathematical Programming

Algorithms and Model Formulations in Mathematical Programming

Author: Stein W. Wallace

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 199

ISBN-13: 3642837247

DOWNLOAD EBOOK

The NATO Advanced Research Workshop (ARW) "Algorithms and Model Formulations in Mathematical Programming" was held at Chr. Michelsen Institute in Bergen, Norway, from June 15 to June 19, 1987. The ARW was organized on behalf of the Committee on Algorithms (COAL) of the Mathematical Programming Society (MPS). Co-directors were Jan Telgen (Van Dien+Co Organisatie, Utrecht, The Netherlands) and Roger J-B Wets (The University of California at Davis, USA). 43 participants from 11 countries attended the ARW. The workshop was organized such that each day started with a - minute keynote presentation, followed by a 45-minute plenary discussion. The first part of this book contains the contributions of the five keynote speakers. The plenary discussions were taped, and the transcripts given to the keynote speakers. They have treated the transcripts differently, some by working the discussions into their papers, others by adding a section which sums up the discussions. The plenary discussions were very interesting and stimulating due to active participation of the audience. The five keynote speakers were asked to view the topic of the workshop, the interaction between algorithms and model formulations, from different perspectives. On the first day of the workshop Professor Alexander H.G. Rinnooy Kan (Erasmus University, Rotterdam, The Netherlands) put the theme into a larger context by his talk "Mathematical programming as an intellectual activity". This is an article of importance to any mathematical programmer who is interested in his field's history and present state.


Linear Programming Using MATLAB®

Linear Programming Using MATLAB®

Author: Nikolaos Ploskas

Publisher: Springer

Published: 2017-10-28

Total Pages: 646

ISBN-13: 3319659197

DOWNLOAD EBOOK

This book offers a theoretical and computational presentation of a variety of linear programming algorithms and methods with an emphasis on the revised simplex method and its components. A theoretical background and mathematical formulation is included for each algorithm as well as comprehensive numerical examples and corresponding MATLAB® code. The MATLAB® implementations presented in this book are sophisticated and allow users to find solutions to large-scale benchmark linear programs. Each algorithm is followed by a computational study on benchmark problems that analyze the computational behavior of the presented algorithms. As a solid companion to existing algorithmic-specific literature, this book will be useful to researchers, scientists, mathematical programmers, and students with a basic knowledge of linear algebra and calculus. The clear presentation enables the reader to understand and utilize all components of simplex-type methods, such as presolve techniques, scaling techniques, pivoting rules, basis update methods, and sensitivity analysis.


Linear Programming

Linear Programming

Author: Robert J Vanderbei

Publisher: Springer Science & Business Media

Published: 2013-07-16

Total Pages: 420

ISBN-13: 1461476305

DOWNLOAD EBOOK

This Fourth Edition introduces the latest theory and applications in optimization. It emphasizes constrained optimization, beginning with a substantial treatment of linear programming and then proceeding to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. Readers will discover a host of practical business applications as well as non-business applications. Topics are clearly developed with many numerical examples worked out in detail. Specific examples and concrete algorithms precede more abstract topics. With its focus on solving practical problems, the book features free C programs to implement the major algorithms covered, including the two-phase simplex method, primal-dual simplex method, path-following interior-point method, and homogeneous self-dual methods. In addition, the author provides online JAVA applets that illustrate various pivot rules and variants of the simplex method, both for linear programming and for network flows. These C programs and JAVA tools can be found on the book's website. The website also includes new online instructional tools and exercises.


Exploring Interior-point Linear Programming

Exploring Interior-point Linear Programming

Author: Ami Arbel

Publisher: MIT Press

Published: 1993

Total Pages: 250

ISBN-13: 9780262510738

DOWNLOAD EBOOK

This book provides practitioners as well as students of this general methodology with an easily accessible introduction to the new class of algorithms known as interior-point methods for linear programming.