Addresses innovations in technology relating to the energy efficiency of a wide variety of contemporary computer systems and networks With concerns about global energy consumption at an all-time high, improving computer networks energy efficiency is becoming an increasingly important topic. Large-Scale Distributed Systems and Energy Efficiency: A Holistic View addresses innovations in technology relating to the energy efficiency of a wide variety of contemporary computer systems and networks. After an introductory overview of the energy demands of current Information and Communications Technology (ICT), individual chapters offer in-depth analyses of such topics as cloud computing, green networking (both wired and wireless), mobile computing, power modeling, the rise of green data centers and high-performance computing, resource allocation, and energy efficiency in peer-to-peer (P2P) computing networks. Discusses measurement and modeling of the energy consumption method Includes methods for energy consumption reduction in diverse computing environments Features a variety of case studies and examples of energy reduction and assessment Timely and important, Large-Scale Distributed Systems and Energy Efficiency is an invaluable resource for ways of increasing the energy efficiency of computing systems and networks while simultaneously reducing the carbon footprint.
Addresses innovations in technology relating to the energy efficiency of a wide variety of contemporary computer systems and networks With concerns about global energy consumption at an all-time high, improving computer networks energy efficiency is becoming an increasingly important topic. Large-Scale Distributed Systems and Energy Efficiency: A Holistic View addresses innovations in technology relating to the energy efficiency of a wide variety of contemporary computer systems and networks. After an introductory overview of the energy demands of current Information and Communications Technology (ICT), individual chapters offer in-depth analyses of such topics as cloud computing, green networking (both wired and wireless), mobile computing, power modeling, the rise of green data centers and high-performance computing, resource allocation, and energy efficiency in peer-to-peer (P2P) computing networks. Discusses measurement and modeling of the energy consumption method Includes methods for energy consumption reduction in diverse computing environments Features a variety of case studies and examples of energy reduction and assessment Timely and important, Large-Scale Distributed Systems and Energy Efficiency is an invaluable resource for ways of increasing the energy efficiency of computing systems and networks while simultaneously reducing the carbon footprint.
This book constitutes revised selected papers from the Conference on Energy Efficiency in Large Scale Distributed Systems, EE-LSDS, held in Vienna, Austria, in April 2013. It served as the final event of the COST Action IC0804 which started in May 2009. The 15 full papers presented in this volume were carefully reviewed and selected from 31 contributions. In addition, 7 short papers and 3 demo papers are included in this book. The papers are organized in sections named: modeling and monitoring of power consumption; distributed, mobile and cloud computing; HPC computing; wired and wireless networking; and standardization issues.
The energy consumption issue in distributed computing systems raises various monetary, environmental and system performance concerns. Electricity consumption in the US doubled from 2000 to 2005. From a financial and environmental standpoint, reducing the consumption of electricity is important, yet these reforms must not lead to performance degradation of the computing systems. These contradicting constraints create a suite of complex problems that need to be resolved in order to lead to 'greener' distributed computing systems. This book brings together a group of outstanding researchers that investigate the different facets of green and energy efficient distributed computing. Key features: One of the first books of its kind Features latest research findings on emerging topics by well-known scientists Valuable research for grad students, postdocs, and researchers Research will greatly feed into other technologies and application domains
This book constitutes the thoroughly refereed post-conference proceedings of the First International Workshop on Energy Efficient Data Centers (E2DC 2012) held in Madrid, Spain, in May 2012. The 13 revised full papers presented were carefully selected from 32 submissions. The papers cover topics from information and communication technologies of green data centers to business models and GreenSLA solutions. The first section presents contributions in form of position and short papers, related to various European projects. The other two sections comprise papers with more in-depth technical details. The topics covered include energy-efficient data center management and service delivery as well as energy monitoring and optimization techniques for data centers.
Distributed systems intertwine with our everyday lives. The benefits and current shortcomings of the underpinning technologies are experienced by a wide range of people and their smart devices. With the rise of large-scale IoT and similar distributed systems, cloud bursting technologies, and partial outsourcing solutions, private entities are encouraged to increase their efficiency and offer unparalleled availability and reliability to their users. The Research Anthology on Architectures, Frameworks, and Integration Strategies for Distributed and Cloud Computing is a vital reference source that provides valuable insight into current and emergent research occurring within the field of distributed computing. It also presents architectures and service frameworks to achieve highly integrated distributed systems and solutions to integration and efficient management challenges faced by current and future distributed systems. Highlighting a range of topics such as data sharing, wireless sensor networks, and scalability, this multi-volume book is ideally designed for system administrators, integrators, designers, developers, researchers, academicians, and students.
The flood of information technology (I.T.) products and services entering the market place often obscures the need to nurture the research enterprise. But as I.T. becomes integrated into all aspects of society, the need for research is even greater. And the range of issues that need to be addressed is broader than ever. This new book highlights the fundamental importance of research to ensure that I.T. meets society's expanding needs. Against the background of dramatic change in the I.T. landscape, the committee examines four key questions: Is the scope of I.T. research broad enough-particularly in the arena of large-scale systems-to address government, business, and social applications? Are government and industrial sponsors providing sufficient funding for I.T. research? Is the research net big both big and diverse enough to capture sufficient financial and intellectual resources to advance the field? Are structures and mechanisms for funding and conducting research suited to the new sets of research challenges?
"This book discusses energy efficiency in large-scale systems. It provides an overview of current energy-reducing technologies and the energy consumption method, addressing topics such as cloud computing, high-performance computing, networks and more. The book begins with an introduction to energy demands in ICT. It then covers topics like green wired/wireless networks, mobile computing, power modeling, green data centers and high-performance computing, resource allocation and energy efficiency in P2P systems"--
With the advent of portable and autonomous computing systems, power con sumption has emerged as a focal point in many research projects, commercial systems and DoD platforms. One current research initiative, which drew much attention to this area, is the Power Aware Computing and Communications (PAC/C) program sponsored by DARPA. Many of the chapters in this book include results from work that have been supported by the PACIC program. The performance of computer systems has been tremendously improving while the size and weight of such systems has been constantly shrinking. The capacities of batteries relative to their sizes and weights has been also improv ing but at a rate which is much slower than the rate of improvement in computer performance and the rate of shrinking in computer sizes. The relation between the power consumption of a computer system and it performance and size is a complex one which is very much dependent on the specific system and the technology used to build that system. We do not need a complex argument, however, to be convinced that energy and power, which is the rate of energy consumption, are becoming critical components in computer systems in gen eral, and portable and autonomous systems, in particular. Most of the early research on power consumption in computer systems ad dressed the issue of minimizing power in a given platform, which usually translates into minimizing energy consumption, and thus, longer battery life.
Updated to include recent advances, this third edition presents strategies and analysis methods for conserving energy and reducing operating costs in residential and commercial buildings. The book explores the latest approaches to measuring and improving energy consumption levels, with calculation examples and Case Studies. It covers field testing, energy simulation, and retrofit analysis of existing buildings. It examines subsystems—such as lighting, heating, and cooling—and techniques needed for accurately evaluating them. Auditors, managers, and students of energy systems will find this book to be an invaluable resource for their work. Explores state-of-the-art techniques and technologies for reducing energy combustion in buildings. Presents the latest energy efficiency strategies and established methods for energy estimation. Provides calculation examples that outline the application of the methods described. Examines the major building subsystems: lighting, heating, and air-conditioning. Addresses large-scale retrofit analysis approaches for existing building stocks. Introduces the concept of energy productivity to account for the multiple benefits of energy efficiency for buildings. Includes Case Studies to give readers a realistic look at energy audits. Moncef Krarti has vast experience in designing, testing, and assessing innovative energy efficiency and renewable energy technologies applied to buildings. He graduated from the University of Colorado with both MS and PhD in Civil Engineering. Prof. Krarti directed several projects in designing energy-efficient buildings with integrated renewable energy systems. He has published over 3000 technical journals and handbook chapters in various fields related to energy efficiency, distribution generation, and demand-side management for the built environment. Moreover, he has published several books on building energy-efficient systems. Prof. Krarti is Fellow member to the American Society for Mechanical Engineers (ASME), the largest international professional society. He is the founding editor of the ASME Journal of Sustainable Buildings & Cities Equipment and Systems. Prof. Krarti has taught several different courses related to building energy systems for over 20 years in the United States and abroad. As a professor at the University of Colorado, Prof. Krarti has been managing the research activities of an energy management center at the school with an emphasis on testing and evaluating the performance of mechanical and electrical systems for residential and commercial buildings. He has also helped the development of similar energy efficiency centers in other countries, including Brazil, Mexico, and Tunisia. In addition, Prof. Krarti has extensive experience in promoting building energy technologies and policies overseas, including the establishment of energy research centers, the development of building energy codes, and the delivery of energy training programs in several countries.