Acclaimed text on engineering math for graduate students covers theory of complex variables, Cauchy-Riemann equations, Fourier and Laplace transform theory, Z-transform, and much more. Many excellent problems.
This book gives background material on the theory of Laplace transforms, together with a fairly comprehensive list of methods that are available at the current time. Computer programs are included for those methods that perform consistently well on a wide range of Laplace transforms. Operational methods have been used for over a century to solve problems such as ordinary and partial differential equations.
This introduction to Laplace transforms and Fourier series is aimed at second year students in applied mathematics. It is unusual in treating Laplace transforms at a relatively simple level with many examples. Mathematics students do not usually meet this material until later in their degree course but applied mathematicians and engineers need an early introduction. Suitable as a course text, it will also be of interest to physicists and engineers as supplementary material.
Suitable for advanced undergraduate and graduate students, this text presents the general properties of partial differential equations, including the elementary theory of complex variables. Solutions. 1965 edition.
The study of complex variables is beautiful from a purely mathematical point of view, and very useful for solving a wide array of problems arising in applications. This introduction to complex variables, suitable as a text for a one-semester course, has been written for undergraduate students in applied mathematics, science, and engineering. Based on the authors' extensive teaching experience, it covers topics of keen interest to these students, including ordinary differential equations, as well as Fourier and Laplace transform methods for solving partial differential equations arising in physical applications. Many worked examples, applications, and exercises are included. With this foundation, students can progress beyond the standard course and explore a range of additional topics, including generalized Cauchy theorem, Painlevé equations, computational methods, and conformal mapping with circular arcs. Advanced topics are labeled with an asterisk and can be included in the syllabus or form the basis for challenging student projects.
Transform methods provide a bridge between the commonly used method of separation of variables and numerical techniques for solving linear partial differential equations. While in some ways similar to separation of variables, transform methods can be effective for a wider class of problems. Even when the inverse of the transform cannot be found ana
Explores the interrelations between real and complex numbers by adopting both generalization and specialization methods to move between them, while simultaneously examining their analytic and geometric characteristics Engaging exposition with discussions, remarks, questions, and exercises to motivate understanding and critical thinking skills Encludes numerous examples and applications relevant to science and engineering students
The fourth edition of Numerical Methods Using MATLAB® provides a clear and rigorous introduction to a wide range of numerical methods that have practical applications. The authors' approach is to integrate MATLAB® with numerical analysis in a way which adds clarity to the numerical analysis and develops familiarity with MATLAB®. MATLAB® graphics and numerical output are used extensively to clarify complex problems and give a deeper understanding of their nature. The text provides an extensive reference providing numerous useful and important numerical algorithms that are implemented in MATLAB® to help researchers analyze a particular outcome. By using MATLAB® it is possible for the readers to tackle some large and difficult problems and deepen and consolidate their understanding of problem solving using numerical methods. Many worked examples are given together with exercises and solutions to illustrate how numerical methods can be used to study problems that have applications in the biosciences, chaos, optimization and many other fields. The text will be a valuable aid to people working in a wide range of fields, such as engineering, science and economics. - Features many numerical algorithms, their fundamental principles, and applications - Includes new sections introducing Simulink, Kalman Filter, Discrete Transforms and Wavelet Analysis - Contains some new problems and examples - Is user-friendly and is written in a conversational and approachable style - Contains over 60 algorithms implemented as MATLAB® functions, and over 100 MATLAB® scripts applying numerical algorithms to specific examples