In the wake of the disastrous tsunami which struck Papua New Guinea in 1998, this volume presents 20 state-of-the-art contributions on landslide tsunamis, including earthquake characteristics and ground motions, modeling of landslides in geotechnical engineering, field surveys on land and at sea, simulations of past, present, and potential future tsunamis, and theoretical studies of tsunami generation by landslides.
The world's foremost experts write about the dynamics of geophysical processes involved in tsunami generation, propagation, and inundation, along with the statistical and geophysical properties of tsunami recurrence, and their application to tsunami forecasts and warnings.
The critically acclaimed serialized review journal for nearly fifty years, Advances in Geophysics is a highly respected publication in the field of geophysics. Since 1952, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 45 volumes, the Serial contains much material still relevant today-truly an essential publication for researchers in all fields of geophysics.
Landslides occur in all geographic regions of the nation in response to a wide range of conditions and triggering processes that include storms, earthquakes, and human activities. Landslides in the United States result in an estimated average of 25 to 50 deaths annually and cost $1 to 3 billion per year. In addition to direct losses, landslides also cause significant environmental damage and societal disruption. Partnerships for Reducing Landslide Risk reviews the U.S. Geological Survey's (USGS)National Landslide Hazards Mitigation Strategy, which was created in response to a congressional directive for a national approach to reducing losses from landslides. Components of the strategy include basic research activities, improved public policy measures, and enhanced mitigation of landslides. This report commends the USGS for creating a national approach based on partnerships with federal, state, local, and non-governmental entities, and finds that the plan components are the essential elements of a national strategy. Partnerships for Reducing Landslide Risk recommends that the plan should promote the use of risk analysis techniques, and should play a vital role in evaluating methods, setting standards, and advancing procedures and guidelines for landslide hazard maps and assessments. This report suggests that substantially increased funding will be required to implement a national landslide mitigation program, and that as part of a 10-year program the funding mix should transition from research and guideline development to partnership-based implementation of loss reduction measures.
The last decades have shown a remarkable increase in the number of heavy rains, typhoons and earthquakes. These natural phenomena are the main causes for geohazards. As a result the mitigation of geohazards has become a major research topic in geotechnical engineering, and in recent years simulation-based predictions and monitoring tools have been
This Special Publication examines tsunami hazard and risk, with particular focus on using the geological record. With Earth’s growing population clustered increasingly on coastlines, tsunami hazards are of concern worldwide. The papers explore the sedimentological and dynamic traces of recent and prehistoric tsunamis globally – from Europe to the Pacific – as well as looking at historic records and how the information can be used to characterise the scale of impacts and areas that are most susceptible to tsunami hazards. Armed with this information, scientists can begin to quantify risks, both to populations and in economic terms. This volume is aimed both at scientists working in this field and at a wider community, interested in tsunami science and natural hazard assessment.
An examination of ancient and contemporary submarine landslides and their impact Landslides are common in every subaqueous geodynamic context, from passive and active continental margins to oceanic and continental intraplate settings. They pose significant threats to both offshore and coastal areas due to their frequency, dimensions, and terminal velocity, capacity to travel great distances, and ability to generate potentially destructive tsunamis. Submarine Landslides: Subaqueous Mass Transport Deposits from Outcrops to Seismic Profiles examines the mechanisms, characteristics, and impacts of submarine landslides. Volume highlights include: Use of different methodological approaches, from geophysics to field-based geology Data on submarine landslide deposits at various scales Worldwide collection of case studies from on- and off-shore Potential risks to human society and infrastructure Impacts on the hydrosphere, atmosphere, and lithosphere
Historically, submarine-mass failures or mass-transport deposits have been a focus of increasingly intense investigation by academic institutions particularly during the last decade, though they received much less attention by geoscientists in the energy industry. With recent interest in expanding petroleum exploration and production into deeper water-depths globally and more widespread availability of high-quality data sets, mass-transport deposits are now recognized as a major component of most deep-water settings. This recognition has lead to the realization that many aspects of these deposits are still unknown or poorly understood. This volume contains twenty-three papers that address a number of topics critical to further understanding mass-transport deposits. These topics include general overviews of these deposits, depositional settings on the seafloor and in the near-subsurface interval, geohazard concerns, descriptive outcrops, integrated outcrop and seismic data/seismic forward modeling, petroleum reservoirs, and case studies on several associated topics. This volume will appeal to a broad cross section of geoscientists and geotechnical engineers, who are interested in this rapidly expanding field. The selection of papers in this volume reflects a growing trend towards a more diverse blend of disciplines and topics, covered in the study of mass-transport deposits.