Lagrangian Reduction by Stages

Lagrangian Reduction by Stages

Author: Hernán Cendra

Publisher: American Mathematical Soc.

Published: 2001

Total Pages: 125

ISBN-13: 0821827154

DOWNLOAD EBOOK

This booklet studies the geometry of the reduction of Lagrangian systems with symmetry in a way that allows the reduction process to be repeated; that is, it develops a context for Lagrangian reduction by stages. The Lagrangian reduction procedure focuses on the geometry of variational structures and how to reduce them to quotient spaces under group actions. This philosophy is well known for the classical cases, such as Routh reduction for systems with cyclic variables (where the symmetry group is Abelian) and Euler-Poincare reduction (for the case in which the configuration space is a Lie group) as well as Euler-Poincare reduction for semidirect products.


Hamiltonian Reduction by Stages

Hamiltonian Reduction by Stages

Author: Jerrold E. Marsden

Publisher: Springer

Published: 2007-06-05

Total Pages: 527

ISBN-13: 3540724702

DOWNLOAD EBOOK

This volume provides a detailed account of the theory of symplectic reduction by stages, along with numerous illustrations of the theory. It gives special emphasis to group extensions, including a detailed discussion of the Euclidean group, the oscillator group, the Bott-Virasoro group and other groups of matrices. The volume also provides ample background theory on symplectic reduction and cotangent bundle reduction.


Lagrangian Reduction by Stages

Lagrangian Reduction by Stages

Author: Hernán Cendra

Publisher:

Published: 2014-09-11

Total Pages: 108

ISBN-13: 9781470403157

DOWNLOAD EBOOK

Introduction Preliminary constructions The Lagrange-Poincare equations Wong's equations and coordinate formulas The Lie algebra structure on sections of the reduced bundle Reduced tangent bundles Further examples The category $\mathfrak{LP}^*$ and Poisson geometry Bibliography.


Geometry, Mechanics, and Dynamics

Geometry, Mechanics, and Dynamics

Author: Paul Newton

Publisher: Springer Science & Business Media

Published: 2006-05-11

Total Pages: 573

ISBN-13: 0387217916

DOWNLOAD EBOOK

Jerry Marsden, one of the world’s pre-eminent mechanicians and applied mathematicians, celebrated his 60th birthday in August 2002. The event was marked by a workshop on “Geometry, Mechanics, and Dynamics”at the Fields Institute for Research in the Mathematical Sciences, of which he wasthefoundingDirector. Ratherthanmerelyproduceaconventionalp- ceedings, with relatively brief accounts of research and technical advances presented at the meeting, we wished to acknowledge Jerry’s in?uence as a teacher, a propagator of new ideas, and a mentor of young talent. Con- quently, starting in 1999, we sought to collect articles that might be used as entry points by students interested in ?elds that have been shaped by Jerry’s work. At the same time we hoped to give experts engrossed in their own technical niches an indication of the wonderful breadth and depth of their subjects as a whole. This book is an outcome of the e?orts of those who accepted our in- tations to contribute. It presents both survey and research articles in the several ?elds that represent the main themes of Jerry’s work, including elasticity and analysis, ?uid mechanics, dynamical systems theory, g- metric mechanics, geometric control theory, and relativity and quantum mechanics. The common thread running through this broad tapestry is the use of geometric methods that serve to unify diverse disciplines and bring a widevarietyofscientistsandmathematicianstogether,speakingalanguage which enhances dialogue and encourages cross-fertilization.


Momentum Maps and Hamiltonian Reduction

Momentum Maps and Hamiltonian Reduction

Author: Juan-Pablo Ortega

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 526

ISBN-13: 1475738110

DOWNLOAD EBOOK

* Winner of the Ferran Sunyer i Balaguer Prize in 2000. * Reviews the necessary prerequisites, beginning with an introduction to Lie symmetries on Poisson and symplectic manifolds. * Currently in classroom use in Europe. * Can serve as a resource for graduate courses and seminars in Hamiltonian mechanics and symmetry, symplectic and Poisson geometry, Lie theory, mathematical physics, and as a comprehensive reference resource for researchers.


Symplectic Geometry and Topology

Symplectic Geometry and Topology

Author: Yakov Eliashberg

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 452

ISBN-13: 9780821886892

DOWNLOAD EBOOK

Symplectic geometry has its origins as a geometric language for classical mechanics. But it has recently exploded into an independent field interconnected with many other areas of mathematics and physics. The goal of the IAS/Park City Mathematics Institute Graduate Summer School on Symplectic Geometry and Topology was to give an intensive introduction to these exciting areas of current research. Included in this proceedings are lecture notes from the following courses: Introductionto Symplectic Topology by D. McDuff; Holomorphic Curves and Dynamics in Dimension Three by H. Hofer; An Introduction to the Seiberg-Witten Equations on Symplectic Manifolds by C. Taubes; Lectures on Floer Homology by D. Salamon; A Tutorial on Quantum Cohomology by A. Givental; Euler Characteristicsand Lagrangian Intersections by R. MacPherson; Hamiltonian Group Actions and Symplectic Reduction by L. Jeffrey; and Mechanics: Symmetry and Dynamics by J. Marsden. Information for our distributors: Titles in this series are copublished with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.


Mathematics of Complexity and Dynamical Systems

Mathematics of Complexity and Dynamical Systems

Author: Robert A. Meyers

Publisher: Springer Science & Business Media

Published: 2011-10-05

Total Pages: 1885

ISBN-13: 1461418054

DOWNLOAD EBOOK

Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.


Quantization of Singular Symplectic Quotients

Quantization of Singular Symplectic Quotients

Author: N.P. Landsman

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 360

ISBN-13: 3034883641

DOWNLOAD EBOOK

This is the first exposition of the quantization theory of singular symplectic (Marsden-Weinstein) quotients and their applications to physics. The reader will acquire an introduction to the various techniques used in this area, as well as an overview of the latest research approaches. These involve classical differential and algebraic geometry, as well as operator algebras and noncommutative geometry. Thus one will be amply prepared to follow future developments in this field.


Joseph Fourier 250th Birthday

Joseph Fourier 250th Birthday

Author: Frédéric Barbaresco

Publisher: MDPI

Published: 2019-03-28

Total Pages: 260

ISBN-13: 3038977462

DOWNLOAD EBOOK

For the 250th birthday of Joseph Fourier, born in 1768 in Auxerre, France, this MDPI Special Issue will explore modern topics related to Fourier Analysis and Heat Equation. Modern developments of Fourier analysis during the 20th century have explored generalizations of Fourier and Fourier–Plancherel formula for non-commutative harmonic analysis, applied to locally-compact, non-Abelian groups. In parallel, the theory of coherent states and wavelets has been generalized over Lie groups. One should add the developments, over the last 30 years, of the applications of harmonic analysis to the description of the fascinating world of aperiodic structures in condensed matter physics. The notions of model sets, introduced by Y. Meyer, and of almost periodic functions, have revealed themselves to be extremely fruitful in this domain of natural sciences. The name of Joseph Fourier is also inseparable from the study of the mathematics of heat. Modern research on heat equations explores the extension of the classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. In parallel, in geometric mechanics, Jean-Marie Souriau interpreted the temperature vector of Planck as a space-time vector, obtaining, in this way, a phenomenological model of continuous media, which presents some interesting properties. One last comment concerns the fundamental contributions of Fourier analysis to quantum physics: Quantum mechanics and quantum field theory. The content of this Special Issue will highlight papers exploring non-commutative Fourier harmonic analysis, spectral properties of aperiodic order, the hypoelliptic heat equation, and the relativistic heat equation in the context of Information Theory and Geometric Science of Information.