Atmospheric aerosols are an important and a highly complex component of the Earth’s atmosphere that alter the radiative forcing and the chemical composition of the gas phase. These effects have impacts on local air quality and the global climate. Atmospheric Aerosol Chemistry outlines research findings to date in aerosol chemistry and advances in analytical tools used in laboratory settings for studying their surface and bulk reactivity.
This Synthesis and Assessment Product (SAP) critically reviews current knowledge about global distributions and properties of atmospheric aerosols, as they relate to aerosol impacts on climate. It assesses possible next steps aimed at substantially reducing uncertainties in aerosol radiative forcing estimates. Current measurement techniques and modeling approaches are summarized, providing context. The objectives of this report are: (1) to promote a consensus about the knowledge base for climate change decision support; and (2) to provide a synthesis and integration of the current knowledge of the climate-relevant impacts of anthropogenic aerosols. Illustrations.
This book contains the papers and discussions from the symposium, "PARTICU LATE CARBON: Atmospheric Life Cycle," held at the General Motors Research Laboratories on October 13-14, 1980. This symposium, which focused on atmospheric particulate elemental carbon, or soot, was the twenty-fifth in this series sponsored by the General Motors Research Laboratories. The present symposium volume contains discussions of the following aspects of particulate elemental carbon (EC): the atmos pheric life cycle of EC including sources, sinks, and transport processes, the role of EC in atmospheric chemistry and optics, the possible role of EC in altering climate, and measurement techniques as well as ambient concentrations in urban, rural, and remote areas. Previous symposia have covered a wide range of scientific and engineering subjects. Topics are selected because they are new or represent rapidly changing fields and are of significant technical importance. It is ironic that the study of particulate elemental carbon or soot should meet the above criteria for selection because soot, especially from coal and wood combustion, has been a recognized air pollutant for centuries. However, since the 1950s, when intense efforts to study air pollution were initiated, to until a few years ago, the role of elemental carbon in the atmosphere was largely ignored. The major reason for this was the lack of a suitable measurement technique.
This two-volume set provides an extensive review of the abundant past and recent literature on the atmospheric chemistry in the Mediterranean region. The books document the experience gained on the atmospheric composition over the Mediterranean basin and close areas after six decades of research, starting from early studies of radioactive aerosol fallouts and intense desert dust events in the 1960s, followed by studies of aerosols collected during oceanographic cruises in the early 1980s, and including subsequent knowledge from various surface monitoring stations, intensive campaigns, satellite climatologies, laboratory studies, as well as chemistry-transport and climate models. Through ten thematic sections, the authors examine the sources and fates of atmospheric pollutants over the Mediterranean basin and what we know about the main impacts of the regional atmospheric chemistry. This overview not only considers the full regional cycle of both aerosol and reactive gases including emissions, transport, transformations, and sinks, but also addresses their major impacts on air quality and health, on the radiative budget and climate, on marine chemistry and biogeochemistry . The volumes are an initiative from the ChArMEx project that has federated many studies on those topics in the 2010-2020decade, and update the scientific knowledge by integrating the ChArMEx and non-ChArMEx literature. The books are contributed by a large pool of well-known authors from the respective fields, mainly from France and Greece, but also from six other Mediterranean and eight non-Mediterranean countries. All Chapters have been peer-reviewed by international scientific experts in the corresponding domains. Volume 2 focuses on emissions and their sources, recent progress on chemical processes, aerosol properties, atmospheric deposition, and the impacts of air pollution on human health, regional climate and ecosystems. Recommendations for future research in these fields are finally proposed. The targeted audience is the academic community working on atmospheric chemistry and its impacts, especially teams having a special interest in the Mediterranean region, which includes many countries and institutes worldwide.
There is now a growing awareness that, in addition to the well publicized influence of carbon dioxide and other greenhouse gases on the warming of the earth's atmosphere, aerosol particles may also play an important role in forcing climate change. This volume brings together previously unavailable data and interpretative analyses, derived from studies in both the U.S. and U.S.S.R., which review, update, and assess aerosol-related climatic effects.
Atmospheric Aerosols is a vital problem in current environmental research due to its importance in atmospheric optics, energetics, radiative transfer studies, chemistry, climate, biology and public health. Aerosols can influence the energy balance of the terrestrial atmosphere, the hydrological cycle, atmospheric dynamics and monsoon circulations. Because of the heterogeneous aerosol field with large spatial and temporal variability and reduction in uncertainties in aerosol quantification is a challenging task in atmospheric sciences. Keeping this in view the present study aims to assess the impact of aerosols on coastal Indian station Visakhapatnam and the adjoining Bay of Bengal. An aerosol is a colloid of fine solid particles or liquid droplets, in air or another gas. Aerosols can be natural or not. Examples of natural aerosols are fog, forest exudates and geyser steam.
Ein Blick auf die morphologischen, physikalischen und chemischen Eigenschaften von Aerosolen aus den unterschiedlichsten natürlichen und anthropogenen Quellen trägt zum besseren Verständnis der Rolle bei, die Aerosolpartikel bei der Streuung und Absorption kurz- und langwelliger Strahlung spielen. Dieses Fachbuch bietet Informationen, die sonst schwer zu finden sind, und vermittelt ausführlich die Kenntnisse, die erforderlich sind, um die mikrophysikalischen, chemischen und Strahlungsparameter zu charakterisieren, die bei der Wechselwirkung von Sonnen- und Erdstrahlen so überaus wichtig sind. Besonderes Augenmerk liegt auf den indirekten Auswirkungen von Aerosolen auf das Klima im Rahmen des komplexen Systems aus Aerosolen, Wolken und der Atmosphäre. Auch geht es vorrangig um die Wirkungen natürlicher und anthropogener Aerosole auf die Luftqualität und die Umwelt, auf die menschliche Gesundheit und unser kulturelles Erbe. Mit einem durchgängig lösungsorientierten Ansatz werden nicht nur die Probleme und Gefahren dieser Aerosole behandelt, sondern auch praktikable Lösungswege aufgezeigt.
Aquatic and Surface Photochemistry provides a broad overview of current research in the emerging field of environmental aquatic and surface photochemistry. Selected reviews and current research articles are blended to provide an in-depth treatment of various aspects of this research area. The first part of the text deals with photochemistry in the environment, covering recent research on the following topics: aquatic photochemistry of organic pollutants and agrochemicals, photochemical cycling of carbon and transition metals (especially iron), photochemical formation of reactive oxygen species in natural waters, photoreaction in cloud and rain droplets, and photoreactions on environmental surfaces (soil, ash, metal, oxide). The second part provides discussions and data on both heterogeneous photocatalytic and homogeneous processes, with topics ranging from applications to mechanistic studies. These chapters illustrate the wide diversity of pollutant classes that are degradable by photochemical techniques and the effects of various reaction conditions on the rates and efficiency of the techniques. Current kinetic studies are presented, which provide new information about the role of adsorption and the nature of the reactive oxidizing species that mediate these photoremediation processes.This book will interest civil, chemical, and environmental engineers, as well as chemists, soil scientists, geochemists, and atmospheric chemists.
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 152. Sea salt aerosol (SSA) exerts a major influence over a broad reach of geophysics. It is important to the physics and chemistry of the marine atmosphere and to marine geochemistry and biogeochemistry generally. It affects visibility, remote sensing, atmospheric chemistry, and air quality. Sea salt aerosol particles interact with other atmospheric gaseous and aerosol constituents by acting as sinks for condensable gases and suppressing new particle formation, thus influencing the size distribution of these other aerosols and more broadly influencing the geochemical cycles of substances with which they interact. As the key aerosol constituent over much of Earth's surface at present, and all the more so in pre-industrial times, SSA is central to description of Earth's aerosol burden.
Life on Earth is critically dependent upon the continuous cycling of water between oceans, continents and the atmosphere. Precipitation (including rain, snow, and hail) is the primary mechanism for transporting water from the atmosphere back to the Earth’s surface. It is also the key physical process that links aspects of climate, weather, and the global hydrological cycle. Changes in precipitation regimes and the frequency of extreme weather events, such as floods, droughts, severe ice/snow storms, monsoon fluctuations and hurricanes are of great potential importance to life on the planet. One of the factors that could contribute to precipitation modification is aerosol pollution from various sources such as urban air pollution and biomass burning. Natural and anthropogenic changes in atmospheric aerosols might have important implications for precipitation by influencing the hydrological cycle, which in turn could feed back to climate changes. From an Earth Science perspective, a key question is how changes expected in climate will translate into changes in the hydrological cycle, and what trends may be expected in the future. We require a much better understanding and hence predictive capability of the moisture and energy storages and exchanges among the Earth’s atmosphere, oceans, continents and biological systems. This book is a review of our knowledge of the relationship between aerosols and precipitation reaching the Earth's surface and it includes a list of recommendations that could help to advance our knowledge in this area.