Professor L. D. Faddeev's seminar at Steklov Mathematical Institute (St. Petersburg, Russia) has a long history of over 30 years of intensive work which shaped modern mathematical physics. This collection, honoring Professor Faddeev's 65th anniversary, has been prepared by his students and colleagues. Topics covered in the volume include classical and quantum integrable systems (both analytic and algebraic aspects), quantum groups and generalizations, quantum field theory, and deformation quantization. Included is a history of the seminar highlighting important developments, such as the invention of the quantum inverse scattering method and of quantum groups. The book will serve nicely as a comprehensive, up-to-date resource on the topic.
The Institute for Theoretical and Experimental Physics (ITEP) is internationally recognized for achievements in various branches of theoretical physics. For many years, the seminars at ITEP have been among the main centers of scientific life in Moscow. This volume is a collection of articles by participants of the seminar on mathematical physics that has been held at ITEP since 1983. This is the second such collection; the first was published in the same series, AMS Translations, Series 2, vol. 191. The papers in the volume are devoted to several mathematical topics that strongly influenced modern theoretical physics. Among these topics are cohomology and representations of infinite Lie algebras and superalgebras, Hitchin and Knizhnik-Zamolodchikov-Bernard systems, and the theory of $D$-modules. The book is intended for graduate students and research mathematicians working in algebraic geometry, representation theory, and mathematical physics.
This volume contains a selection of papers based on presentations given in 2006-2007 at the S. P. Novikov Seminar at the Steklov Mathematical Institute in Moscow. Novikov's diverse interests are reflected in the topics presented in the book. The articles address topics in geometry, topology, and mathematical physics. The volume is suitable for graduate students and researchers interested in the corresponding areas of mathematics and physics.
Professor L. D. Faddeev's seminar at Steklov Mathematical Institute (St. Petersburg, Russia) has a record of more than 30 years of intensive work which has helped to shape modern mathematical physics. This collection, honoring Professor Faddeev's 65th anniversary, has been prepared by his students and colleagues. Topics covered in the volume include classical and quantum integrable systems (both analytic and algebraic aspects), quantum groups and generalizations, quantum field theory, and deformation quantization. Included is a history of the seminar highlighting important developments, such a.
Ludwig Faddeev is widely recognized as one of the titans of 20th century mathematical physics. His fundamental contributions to scattering theory, quantum gauge theories, and the theory of classical and quantum completely integrable systems played a key role in shaping modern mathematical physics.Ludwig Faddeev's major achievements include the solution of the three-body problem in quantum mechanics, the mathematical formulation of quantum gauge theories and corresponding Feynman rules, Hamiltonian and algebraic methods in mathematical physics, with applications to gauge theories with anomalies, quantum systems with constraints and solitons, the discovery of the algebraic structure of classical and quantum integrable systems and quantum groups, and solitons with the topology of knots.Faddeev's name is imprinted in many areas of mathematics and theoretical physics, including 'Faddeev's equations' and 'Faddeev's Green function' in scattering theory, 'Faddeev-Popov ghosts' and 'Faddeev-Popov determinant' in gauge theories, 'Gardner-Faddeev-Zakharov bracket' for the KdV equation, 'Faddeev-Zamolodchikov algebra' in quantum integrable systems, 'Faddeev-Reshetikhin-Takhtajan construction' in the theory of quantum groups, knotted solitons in the 'Skyrme-Faddeev model' and many others.Ludwig Faddeev founded the St. Petersburg school of modern mathematical physics and distinguished himself by serving the mathematics community for over three decades including his leadership of the International Mathematical Union in the period of 1986-1990. He was conferred numerous prizes and memberships of prestigious institutions in recognition of the importance of his work. These include the Dannie Heineman Prize for Mathematical Physics, the Dirac Medal, the Max Planck Medal, the Shaw Prize and the Lomonosov Gold Medal among others.A gathering of contributions from some of the biggest names in mathematics and physics, this volume serves as a tribute to this legendary figure. Volume contributors include: Fields medalist Sir Michael Atiyah, Jürg Fröhlich, Roman Jackiw, Vladimir Korepin, Nikita Nekrasov, André Neveu, Alexander M Polyakov, Samson Shatashvili, Fedor Smirnov as well as Nobel laureates Frank Wilczek and C N Yang.
Presents applications of Poisson geometry to some fundamental well-known problems in mathematical physics. This volume is suitable for graduate students and researchers interested in mathematical physics. It uses methods such as: unexpected algebras with non-Lie commutation relations, dynamical systems theory, and semiclassical asymptotics.
This is a collection of Prof L D Faddeev's important lectures, papers and talks. Some of these have not been published before and some have, for the first time, been translated from Russian into English. The topics covered correspond to several distinctive and pioneering contributions of Prof Faddeev to modern mathematical physics: quantization of Yang?Mills and Einstein gravitational fields, soliton theory, the many-dimensional inverse problem in potential scattering, the Hamiltonian approach to anomalies, and the theory of quantum integrable models. There are also two papers on more general aspects of the interrelations between physics and mathematics as well as an autobiographical essay.
Over the course of his distinguished career, Nicolai Reshetikhin has made a number of groundbreaking contributions in several fields, including representation theory, integrable systems, and topology. The chapters in this volume – compiled on the occasion of his 60th birthday – are written by distinguished mathematicians and physicists and pay tribute to his many significant and lasting achievements. Covering the latest developments at the interface of noncommutative algebra, differential and algebraic geometry, and perspectives arising from physics, this volume explores topics such as the development of new and powerful knot invariants, new perspectives on enumerative geometry and string theory, and the introduction of cluster algebra and categorification techniques into a broad range of areas. Chapters will also cover novel applications of representation theory to random matrix theory, exactly solvable models in statistical mechanics, and integrable hierarchies. The recent progress in the mathematical and physicals aspects of deformation quantization and tensor categories is also addressed. Representation Theory, Mathematical Physics, and Integrable Systems will be of interest to a wide audience of mathematicians interested in these areas and the connections between them, ranging from graduate students to junior, mid-career, and senior researchers.