Kinetics of soil chemical reactions. Methods of obtaining and analyzin kinetic data. Relaxation methods for studying kinetics of soil chemical phenomena. Kinetics of ion sorptionon humic substances. Kinetics of sorption/desorption processes in soils. Modelling nonequilibrium reactions of inorganic solutes in soil columns. Sorption kinetics of organic chemicals: methods, models, and mechanisms.
This book develops a unified, comprehensive account of the important chemical processes in soils that can be described by reactions. The perspective taken is that of chemical thermodynamics and kinetics applied to soil systems in detail in order to provide an understanding of phenomena ranging from complexation reactions to colloidal flocculation. Problem sets are included at the end of each chapter.
As the author states in his Preface, this book is written at a time when scientific and lay communities recognize that knowledge of environmental chemistry is fundamental in understanding and predicting the fate of pollutants in soils and waters, and in making sound decisions about remediation of contaminated soils. Environmental Soil Chemistry presents the fundamental concepts of soil science and applies them to environmentally significant reactions in soil. Clearly and concisely written for undergraduate and beginning graduate students of soil science, the book is likewise accessible to all students and professionals of environmental engineering and science. Chapters cover background information useful to students new to the discipline, including the chemistry of inorganic and organic soil components, soilacidity and salinity, and ion exchange and redox phenomena. However, discussion also extends to sorption/desorption, oxidation-reduction of metals and organic chemicals, rates of pollutant reactions as well as technologies for remediating contaminated soils. Supplementary reading lists, sample problems, and extensive tables and figures make this textbook accessible to readers. - Provides students with both sound contemporary training in the basics of soil chemistry and applications to real-world environmental concerns - Timely and comprehensive discussion of important concepts including: Sorption/desorption, Oxidation-reduction of metals and organics, Effects of acidic deposition and salinity on contaminant reactions - Boxed sections focus on sample problems and explanations of key terms and parameters - Extensive tables on elemental composition of soils, rocks and sediments, pesticide classes, inorganic minerals, and methods of decontaminating soils - Clearly written for all students and professionals in environmental science and environmental engineering as well as soil science
The kinetics of reactions in soil and aquatic environments is a topic of extreme importance and interest. To properly understand the fate of applied fertilizers, pesticides, and organic pollutants with time, and to thus improve nutrient availability and the quality of our groundwater, one must study kinetics. This is the first compre - Demonstrates different kinetic methodologies - Shows how reactions on soil and soil constituents can be measured by utilizing different techniques - Describes rates and mechanisms of interactions with pesticides and organic pollutants with soil - Covers the kinetics of chemical weathering - Discusses how to use mathematical modeling and computer simulation to model kinetic reactions
Pollution has been a developing problem for quite some time in the modern world, and it is no secret how these chemicals negatively affect the environment. With these contaminants penetrating the earth’s water supply, affecting weather patterns, and threatening human health, it is critical to study the interaction between commercially produced chemicals and the overall ecosystem. Understanding the nature of these pollutants, the extent in which they are harmful to humans, and quantifying the total risks are a necessity in protecting the future of our world. The Handbook of Research on Emerging Developments and Environmental Impacts of Ecological Chemistry is an essential reference source that discusses the process of chemical contributions and their behavior within the environment. Featuring research on topics such as organic pollution, biochemical technology, and food quality assurance, this book is ideally designed for environmental professionals, researchers, scientists, graduate students, academicians, and policymakers seeking coverage on the main concerns, approaches, and solutions of ecological chemistry in the environment.
Explores soil as a nexus for water, chemicals, and biologically coupled nutrient cycling Soil is a narrow but critically important zone on Earth's surface. It is the interface for water and carbon recycling from above and part of the cycling of sediment and rock from below. Hydrogeology, Chemical Weathering, and Soil Formation places chemical weathering and soil formation in its geological, climatological, biological and hydrological perspective. Volume highlights include: The evolution of soils over 3.25 billion years Basic processes contributing to soil formation How chemical weathering and soil formation relate to water and energy fluxes The role of pedogenesis in geomorphology Relationships between climate soils and biota Soils, aeolian deposits, and crusts as geologic dating tools Impacts of land-use change on soils The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the Editors
In Environmental Soil and Water Chemistry, leading soil and water authority V. P. Evangelou presents a complete overview of the principles and applications of soil science, addressing the subject by viewing the interactions between soil and water as a basis for understanding the nature, extent, and treatment of polluted soil and water. The text opens with a discussion of principles - the fundamental tenets of chemistry needed to understand soil and water quality and treatment of polluted resources - and continues with a look at applications for the control and treatment of soil and water. This text is suitable for advanced undergraduates and beginning graduate students.
Written by a multidisciplinary group of soil and environmental scientists, Biophysico-Chemical Processes of Heavy Metals and Metalloids in Soil Environments provides the scientific community with a critical qualitative and quantitative review of the fundamentals of the processes of pollutants in soil environments. The book covers pollutants' speciation, mobility, bioavailability and toxicity, and impacts on development of innovative restoration strategies. In addition, the development of innovative remediation strategies for polluted soils is covered.
During the last four decades, tremendous advances have been made towards the understanding of transport characteristics of contaminants in soils, solutes, and tracers in geological media. Transport & Fate of Chemicals in Soils: Principles & Applications offers a comprehensive treatment of the subject complete with supporting examples of mathematical models that describe contaminants reactivity and transport in soils and aquifers. This approach makes it a practical guide for designing experiments and collecting data that focus on characterizing retention as well as release kinetic reactions in soils and contaminant transport experiments in the laboratory, greenhouse), and in the field. The book provides the basic framework of the principals governing the sorption and transport of chemicalsin soils. It focuses on physical processes such as fractured media, multiregion, multiple porosities, and heterogeneity and effect of scale as well as chemical processes such as nonlinear kinetics, release and desorption hysteresis, multisite and multireaction reactions, and competitive-type reactions. The coverage also includes details of sorption behavior of chemicals with soil matrix surfaces as well the integration of sorption characteristics with mechanisms that govern solute transport in soils. The discussions of applications of the principles of sorption and transport are not restricted to contaminants, but also include nitrogen, phosphorus, and trace elements including essential micronutrients, heavy metals, military explosives, pesticides, and radionuclides. Written in a very clear and easy-to-follow language by a pioneer in soil science, this book details the basic framework of the physical and chemical processes governing the transport of contaminants, trace elements, and heavy metals in soils. Highly practical, it includes laboratory methods, examples, and empirical formulations. The approach taken by the author gives you not only the fundamentals of understanding of reactive chemicals retention and their transport in soils and aquifers, but practical guidance you can put to immediate use in designing experiments and collecting data.