Kinetic Equations and Asymptotic Theory
Author: François Bouchut
Publisher: Elsevier Masson
Published: 2000
Total Pages: 180
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: François Bouchut
Publisher: Elsevier Masson
Published: 2000
Total Pages: 180
ISBN-13:
DOWNLOAD EBOOKAuthor: Yoshio Sone
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 358
ISBN-13: 146120061X
DOWNLOAD EBOOKThis monograph is intended to provide a comprehensive description of the rela tion between kinetic theory and fluid dynamics for a time-independent behavior of a gas in a general domain. A gas in a steady (or time-independent) state in a general domain is considered, and its asymptotic behavior for small Knudsen numbers is studied on the basis of kinetic theory. Fluid-dynamic-type equations and their associated boundary conditions, together with their Knudsen-layer corrections, describing the asymptotic behavior of the gas for small Knudsen numbers are presented. In addition, various interesting physical phenomena derived from the asymptotic theory are explained. The background of the asymptotic studies is explained in Chapter 1, accord ing to which the fluid-dynamic-type equations that describe the behavior of a gas in the continuum limit are to be studied carefully. Their detailed studies depending on physical situations are treated in the following chapters. What is striking is that the classical gas dynamic system is incomplete to describe the behavior of a gas in the continuum limit (or in the limit that the mean free path of the gas molecules vanishes). Thanks to the asymptotic theory, problems for a slightly rarefied gas can be treated with the same ease as the corresponding classical fluid-dynamic problems. In a rarefied gas, a temperature field is di rectly related to a gas flow, and there are various interesting phenomena which cannot be found in a gas in the continuum limit.
Author: Thierry Passot
Publisher: American Mathematical Soc.
Published: 2005
Total Pages: 322
ISBN-13: 0821837230
DOWNLOAD EBOOKThis book covers a variety of topics related to kinetic theory in neutral gases and magnetized plasmas, with extensions to other systems such as quantum plasmas and granular flows. A comprehensive presentation is given for the Boltzmann equations and other kinetic equations for a neutral gas, together with the derivations of compressible and incompressible fluid dynamical systems, and their rigorous justification. Several contributions are devoted to collisionless magnetized plasmas. Rigorous results concerning the well-posedness of the Vlasov-Maxwell system are presented. Special interest is devoted to asymptotic regimes where the scales of variation of the electromagnetic field are clearly separated from those associated with the gyromotion of the particles. This volume collects lectures given at the Short Course and Workshop on Kinetic Theory organized at the Fields Institute of Mathematical Sciences in Toronto during the Spring of 2004.
Author: Alexander Sinitsyn
Publisher: Elsevier
Published: 2011-06-17
Total Pages: 321
ISBN-13: 0123877806
DOWNLOAD EBOOKBoltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in 1938 and serves as a basis of plasma physics and describes large-scale processes and galaxies in astronomy, star wind theory.This book provides a comprehensive review of both equations and presents both classical and modern applications. In addition, it discusses several open problems of great importance. - Reviews the whole field from the beginning to today - Includes practical applications - Provides classical and modern (semi-analytical) solutions
Author: Pierre Degond
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 360
ISBN-13: 0817682007
DOWNLOAD EBOOKIn recent years kinetic theory has developed in many areas of the physical sciences and engineering, and has extended the borders of its traditional fields of application. This monograph is a self-contained presentation of such recently developed aspects of kinetic theory, as well as a comprehensive account of the fundamentals of the theory. Emphasizing modeling techniques and numerical methods, the book provides a unified treatment of kinetic equations not found in more focused works. Specific applications presented include plasma kinetic models, traffic flow models, granular media models, and coagulation-fragmentation problems. The work may be used for self-study, as a reference text, or in graduate-level courses in kinetic theory and its applications.
Author: J. R. Mika
Publisher: World Scientific
Published: 1995
Total Pages: 332
ISBN-13: 9789810221256
DOWNLOAD EBOOKIn recent years there appeared a large number of papers as well as chapters in more general monographs devoted to evolution equations containing small (or large) parameters. In this book it is intended to gather the existing results as well as to introduce new ones on the field of initial value problems for singularly perturbed evolution equations of the resonance type. Such equations are of great interest in the applied sciences, particularly in the kinetic theory which is chosen as the main field of application for the asymptotic theory developed in the monograph.
Author: N. Bellomo
Publisher: World Scientific
Published: 1995
Total Pages: 276
ISBN-13: 9789810221669
DOWNLOAD EBOOKThis is a collection of four lectures on some mathematical aspects related to the nonlinear Boltzmann equation. The following topics are dealt with: derivation of kinetic equations, qualitative analysis of the initial value problem, singular perturbation analysis towards the hydrodynamic limit and computational methods towards the solution of problems in fluid dynamics.
Author: S. Friedlander
Publisher: Elsevier
Published: 2002-07-09
Total Pages: 829
ISBN-13: 0080532926
DOWNLOAD EBOOKThe Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.
Author: Niva B Maslova
Publisher: World Scientific
Published: 1993-03-10
Total Pages: 216
ISBN-13: 9814505161
DOWNLOAD EBOOKThe book is devoted to the questions of the long-time behavior of solutions for evolution equations, connected with kinetic models in statistical physics. There is a wide variety of problems where such models are used to obtain reasonable physical as well as numerical results (Fluid Mechanics, Gas Dynamics, Plasma Physics, Nuclear Physics, Turbulence Theory etc.). The classical examples provide the nonlinear Boltzmann equation. Investigation of the long-time behavior of the solutions for the Boltzmann equation gives an approach to the nonlinear fluid dynamic equations. From the viewpoint of dynamical systems, the fluid dynamic equations arise in the theory as a tool to describe an attractor of the kinetic equation.
Author: Renee Gatignol
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 307
ISBN-13: 3642502350
DOWNLOAD EBOOKThis volume contains the proceedings of the symposium held on Friday 6 July 1990 at the University Pierre et Marie Curie (Paris VI), France, in honor of Professor Henri Cabannes on the occasion of his retirement. There were about one hundred participants from nine countries: Canada, France, Germany, Italy, Japan, Norway, Portugal, the Netherlands, and the USA. Many of his past students or his colleagues were among the participants. The twenty-six papers in this volume are written versions submitted by the authors and cover almost all the fields in which Professor Cabannes has actively worked for more than forty-five years. The papers are presented in four chapters: classical kinetic theory and fluid dynamics, discrete kinetic theory, applied fluid mechanics, and continuum mechanics. The editors would like to take this opportunity to thank the generous spon sors of the symposium: the University Pierre et Marie Curie, Commissariat a l'Energie Atomique (especially Academician R. Dautray and Dr. N. Camarcat) and Direction des Recherches et Etudes Techniques (especially Professor P. Lallemand). Many thanks are also due to all the participants for making the symposium a success. Finally, we thank Professor W. Beiglbock and his team at Springer-Verlag for producing this volume.