Kac-Moody and Virasoro Algebras

Kac-Moody and Virasoro Algebras

Author: Peter Goddard

Publisher: World Scientific

Published: 1988

Total Pages: 610

ISBN-13: 9789971504205

DOWNLOAD EBOOK

This volume reviews the subject of Kac-Moody and Virasoro Algebras. It serves as a reference book for physicists with commentary notes and reprints.


Geometric Phases In Physics

Geometric Phases In Physics

Author: Alfred Shapere

Publisher: World Scientific

Published: 1989-07-01

Total Pages: 527

ISBN-13: 981450758X

DOWNLOAD EBOOK

During the last few years, considerable interest has been focused on the phase that waves accumulate when the equations governing the waves vary slowly. The recent flurry of activity was set off by a paper by Michael Berry, where it was found that the adiabatic evolution of energy eigenfunctions in quantum mechanics contains a phase of geometric origin (now known as ‘Berry's phase’) in addition to the usual dynamical phase derived from Schrödinger's equation. This observation, though basically elementary, seems to be quite profound. Phases with similar mathematical origins have been identified and found to be important in a startling variety of physical contexts, ranging from nuclear magnetic resonance and low-Reynolds number hydrodynamics to quantum field theory. This volume is a collection of original papers and reprints, with commentary, on the subject.


Introduction to String Theory

Introduction to String Theory

Author: Sergio Cecotti

Publisher: Springer Nature

Published: 2023-11-07

Total Pages: 846

ISBN-13: 3031365305

DOWNLOAD EBOOK

Graduate students typically enter into courses on string theory having little to no familiarity with the mathematical background so crucial to the discipline. As such, this book, based on lecture notes, edited and expanded, from the graduate course taught by the author at SISSA and BIMSA, places particular emphasis on said mathematical background. The target audience for the book includes students of both theoretical physics and mathematics. This explains the book’s "strange" style: on the one hand, it is highly didactic and explicit, with a host of examples for the physicists, but, in addition, there are also almost 100 separate technical boxes, appendices, and starred sections, in which matters discussed in the main text are put into a broader mathematical perspective, while deeper and more rigorous points of view (particularly those from the modern era) are presented. The boxes also serve to further shore up the reader’s understanding of the underlying math. In writing this book, the author’s goal was not to achieve any sort of definitive conciseness, opting instead for clarity and "completeness". To this end, several arguments are presented more than once from different viewpoints and in varying contexts.


Affine Lie Algebras, Weight Multiplicities, and Branching Rules

Affine Lie Algebras, Weight Multiplicities, and Branching Rules

Author: Sam Kass

Publisher: Univ of California Press

Published: 1990-01-01

Total Pages: 312

ISBN-13: 9780520067684

DOWNLOAD EBOOK

00 This practical treatise is an introduction to the mathematics and physics of affine Kac-Moody algebras. It is the result of an unusual interdisciplinary effort by two physicists and two mathematicians to make this field understandable to a broad readership and to illuminate the connections among seemingly disparate domains of mathematics and physics that are tantalizingly suggested by the ubiquity of Lie theory. The book will be useful to Lie algebraists, high energy physicists, statistical mechanics, and number theorists. Volume One contains a description of Kac-Moody Lie algebras, and especially the affine algebras and their representations; the results of extensive computations follow in Volume Two, which is spiral bound for easy reference. This practical treatise is an introduction to the mathematics and physics of affine Kac-Moody algebras. It is the result of an unusual interdisciplinary effort by two physicists and two mathematicians to make this field understandable to a broad readership and to illuminate the connections among seemingly disparate domains of mathematics and physics that are tantalizingly suggested by the ubiquity of Lie theory. The book will be useful to Lie algebraists, high energy physicists, statistical mechanics, and number theorists. Volume One contains a description of Kac-Moody Lie algebras, and especially the affine algebras and their representations; the results of extensive computations follow in Volume Two, which is spiral bound for easy reference.


Infinite Dimensional Lie Algebras And Groups

Infinite Dimensional Lie Algebras And Groups

Author: Victor G Kac

Publisher: World Scientific

Published: 1989-07-01

Total Pages: 642

ISBN-13: 9814663174

DOWNLOAD EBOOK

Contents:Integrable Representation of Kac-Moody Algebras: Results and Open Problems (V Chari & A Pressley)Existence of Certain Components in the Tensor Product of Two Integrable Highest Weight Modules for Kac-Moody Algebras (SKumar)Frobenius Action on the B-Cohomology (O Mathieu)Certain Rank Two Subsystems of Kac-Moody Root Systems (J Morita)Lie Groups Associated to Kac-Moody Lie Algebras: An Analytic Approach (E Rodriguez-Carrington)Almost Split-K-Forms of Kac-Moody Algebras (G Rousseau)Global Representations of the Diffeomorphism Groups of the Circle (F Bien)Path Space Realization of the Basic Representation of An(1) (E Date et al)Boson-Fermion Correspondence Over (C De Concini et al)Classification of Modular Invariant Representations of Affine Algebras (V G Kac & M Wakimoto)Standard Monomial Theory for SL2 (V Lakshmibai & C S Seshadri)Some Results on Modular Invariant Representations (S Lu)Current Algebras in 3+1 Space-Time Dimensions (J Mickelson)Standard Representations of An(1) (M Primc)Representations of the Algebra Uq(sI(2)), q-Orthogonal Polynomials and Invariants of Links (A N Kirillov & N Yu Reshetikhin)Infinite Super Grassmannians and Super Plücker Equations (M J Bergvelt)Drinfeld-Sokolov Hierarchies and t-Functions (H J Imbens)Super Boson-Fermion Correspondence of Type B (V G Kac & J W van de Leur)Prym Varieties and Soliton Equations (T Shiota)Polynomial Solutions of the BKP Hierarchy and Projective Representations of Symmetric Groups (Y You)Toward Generalized Macdonald's Identities (D Bernard)Conformal Theories with Non-Linearly Extended Virasoro Symmetries and Lie Algebra Classification (A Bilal & J-LGervais)Extended Conformal Algebras from Kac-Moody Algebras (P Bouwknegt)Meromorphic Conformal Field Theory (P Goddard)Local Extensions of the U(1) Current Algebra and Their Positive Energy Representations (R R Paunov & I T Todorov)Conformal Field Theory on Moduli Family of Stable Curves with Gauge Symmetries (A Tsuchiya & Y Yamada) Readership: Mathematicians and mathematical physicists


State Of Matter: A Volume Dedicated To E H Lieb

State Of Matter: A Volume Dedicated To E H Lieb

Author: Michael Aizenman

Publisher: World Scientific

Published: 1994-02-08

Total Pages: 507

ISBN-13: 9814502340

DOWNLOAD EBOOK

This book, a collection of works by leading figures in the field, provides a view of the current research in a broad area of mathematical physics.The collection celebrates Elliot H Lieb's sixtieth birthday and his imprint on the subject. The preface by W Thirring offers a glimpse into the life and work-style of Lieb and some of his contemporaries.


New Developments In The Theory Of Knots

New Developments In The Theory Of Knots

Author: Toshitake Kohno

Publisher: World Scientific

Published: 1990-08-31

Total Pages: 918

ISBN-13: 9814507016

DOWNLOAD EBOOK

This reprint volume focuses on recent developments in knot theory arising from mathematical physics, especially solvable lattice models, Yang-Baxter equation, quantum group and two dimensional conformal field theory. This volume is helpful to topologists and mathematical physicists because existing articles are scattered in journals of many different domains including Mathematics and Physics. This volume will give an excellent perspective on these new developments in Topology inspired by mathematical physics.