Joint Source-Channel Decoding

Joint Source-Channel Decoding

Author: Pierre Duhamel

Publisher: Academic Press

Published: 2009-11-26

Total Pages: 337

ISBN-13: 0080922449

DOWNLOAD EBOOK

Treats joint source and channel decoding in an integrated way Gives a clear description of the problems in the field together with the mathematical tools for their solution Contains many detailed examples useful for practical applications of the theory to video broadcasting over mobile and wireless networks Traditionally, cross-layer and joint source-channel coding were seen as incompatible with classically structured networks but recent advances in theory changed this situation. Joint source-channel decoding is now seen as a viable alternative to separate decoding of source and channel codes, if the protocol layers are taken into account. A joint source/protocol/channel approach is thus addressed in this book: all levels of the protocol stack are considered, showing how the information in each layer influences the others. This book provides the tools to show how cross-layer and joint source-channel coding and decoding are now compatible with present-day mobile and wireless networks, with a particular application to the key area of video transmission to mobiles. Typical applications are broadcasting, or point-to-point delivery of multimedia contents, which are very timely in the context of the current development of mobile services such as audio (MPEG4 AAC) or video (H263, H264) transmission using recent wireless transmission standards (DVH-H, DVB-SH, WiMAX, LTE). This cross-disciplinary book is ideal for graduate students, researchers, and more generally professionals working either in signal processing for communications or in networking applications, interested in reliable multimedia transmission. This book is also of interest to people involved in cross-layer optimization of mobile networks. Its content may provide them with other points of view on their optimization problem, enlarging the set of tools which they could use. Pierre Duhamel is director of research at CNRS/ LSS and has previously held research positions at Thomson-CSF, CNET, and ENST, where he was head of the Signal and Image Processing Department. He has served as chairman of the DSP committee and associate Editor of the IEEE Transactions on Signal Processing and Signal Processing Letters, as well as acting as a co-chair at MMSP and ICASSP conferences. He was awarded the Grand Prix France Telecom by the French Science Academy in 2000. He is co-author of more than 80 papers in international journals, 250 conference proceedings, and 28 patents. Michel Kieffer is an assistant professor in signal processing for communications at the Université Paris-Sud and a researcher at the Laboratoire des Signaux et Systèmes, Gif-sur-Yvette, France. His research interests are in joint source-channel coding and decoding techniques for the reliable transmission of multimedia contents. He serves as associate editor of Signal Processing (Elsevier). He is co-author of more than 90 contributions to journals, conference proceedings, and book chapters. Treats joint source and channel decoding in an integrated way Gives a clear description of the problems in the field together with the mathematical tools for their solution Contains many detailed examples useful for practical applications of the theory to video broadcasting over mobile and wireless networks


Joint Source-Channel Coding

Joint Source-Channel Coding

Author: Andres Kwasinski

Publisher: John Wiley & Sons

Published: 2023-01-04

Total Pages: 404

ISBN-13: 1119978521

DOWNLOAD EBOOK

Consolidating knowledge on Joint Source-Channel Coding (JSCC), this book provides an indispensable resource on a key area of performance enhancement for communications networks Presenting in one volume the key theories, concepts and important developments in the area of Joint Source-Channel Coding (JSCC), this book provides the fundamental material needed to enhance the performance of digital and wireless communication systems and networks. It comprehensively introduces JSCC technologies for communications systems, including coding and decoding algorithms, and emerging applications of JSCC in current wireless communications. The book covers the full range of theoretical and technical areas before concluding with a section considering recent applications and emerging designs for JSCC. A methodical reference for academic and industrial researchers, development engineers, system engineers, system architects and software engineers, this book: Explains how JSCC leads to high performance in communication systems and networks Consolidates key material from multiple disparate sources Is an ideal reference for graduate-level courses on digital or wireless communications, as well as courses on information theory Targets professionals involved with digital and wireless communications and networking systems


Design of Source Coders and Joint Source/Channel Coders for Noisy Channels

Design of Source Coders and Joint Source/Channel Coders for Noisy Channels

Author: National Aeronautics and Space Administration (NASA)

Publisher: Createspace Independent Publishing Platform

Published: 2018-07-24

Total Pages: 28

ISBN-13: 9781723488474

DOWNLOAD EBOOK

A theory behind a proposed joint source/channel coding approach is developed and a variable rate design approach which provides substantial improvement over current joint source/channel coder designs is obtained. The Rice algorithm as applied to the output of the Gamma Ray Detector of the Mars Orbiter is evaluated. An alternative algorithm is obtained which outperforms the Rice both in terms of data compression and noisy channel performance. A high-fidelity low-rate image compression algorithm is developed which provides almost distortionless compression of high resolution images. Sayood, Khalid and Rost, Martin C. and Michels, Alan Unspecified Center NASA-CR-181547, NAS 1.26:181547 NAG5-916


Visual Media Coding and Transmission

Visual Media Coding and Transmission

Author: Ahmet Kondoz

Publisher: John Wiley & Sons

Published: 2009-04-01

Total Pages: 588

ISBN-13: 0470740655

DOWNLOAD EBOOK

This book presents the state-of-the-art in visual media coding and transmission Visual Media Coding and Transmission is an output of VISNET II NoE, which is an EC IST-FP6 collaborative research project by twelve esteemed institutions from across Europe in the fields of networked audiovisual systems and home platforms. The authors provide information that will be essential for the future study and development of visual media communications technologies. The book contains details of video coding principles, which lead to advanced video coding developments in the form of Scalable Coding, Distributed Video Coding, Non-Normative Video Coding Tools and Transform Based Multi-View Coding. Having detailed the latest work in Visual Media Coding, networking aspects of Video Communication is detailed. Various Wireless Channel Models are presented to form the basis for both link level quality of service (QoS) and cross network transmission of compressed visual data. Finally, Context-Based Visual Media Content Adaptation is discussed with some examples. Key Features: Contains the latest advances in this important field covered by VISNET II NoE Addresses the latest multimedia signal processing and coding algorithms Covers all important advance video coding techniques, scalable and multiple description coding, distributed video coding and non-normative tools Discusses visual media networking with various wireless channel models QoS methods by way of link adaptation techniques are detailed with examples Presents a visual media content adaptation platform, which is both context aware and digital rights management enabled Contains contributions from highly respected academic and industrial organizations Visual Media Coding and Transmission will benefit researchers and engineers in the wireless communications and signal processing fields. It will also be of interest to graduate and PhD students on media processing, coding and communications courses.


Joint Source-Channel Coding of Discrete-Time Signals with Continuous Amplitudes

Joint Source-Channel Coding of Discrete-Time Signals with Continuous Amplitudes

Author: Norbert Goertz

Publisher: Imperial College Press

Published: 2007

Total Pages: 207

ISBN-13: 1860948464

DOWNLOAD EBOOK

This book provides the first comprehensive and easy-to-read discussion of joint source-channel encoding and decoding for source signals with continuous amplitudes. It is a state-of-the-art presentation of this exciting, thriving field of research, making pioneering contributions to the new concept of source-adaptive modulation. The book starts with the basic theory and the motivation for a joint realization of source and channel coding. Specialized chapters deal with practically relevant scenarios such as iterative source-channel decoding and its optimization for a given encoder, and also improved encoder designs by channel-adaptive quantization or source-adaptive modulation. Although Information Theory is not the main topic of the book OCo in fact, the concept of joint source-channel coding is contradictory to the classical system design motivated by a questionable practical interpretation of the separation theorem OCo this theory still provides the ultimate performance limits for any practical system, whether it uses joint source-channel coding or not. Therefore, the theoretical limits are presented in a self-contained appendix, which is a useful reference also for those not directly interested in the main topic of this book. Sample Chapter(s). Chapter 1: Introduction (98 KB). Contents: Joint Source-Channel Coding: An Overview; Joint Source-Channel Decoding; Channel-Adaptive Scaled Vector Quantization; Index Assignments for Multiple Descriptions Vector Quantizers; Source-Adaptive Modulation; Source-Adaptive Power Allocation; Appendices: Theoretical Performance Limits; Optimal Decoder for a Given Encoder; Symbol Error Probabilities for M-PSK; Derivative of the Expected Distortion for SAM. Readership: Students at advanced undergraduate and graduate level; practitioners and academics in Electrical and Communications Engineering, Information Technology and Computer Science."


Multimedia Analysis, Processing and Communications

Multimedia Analysis, Processing and Communications

Author: Lin Weisi

Publisher: Springer Science & Business Media

Published: 2011-04-11

Total Pages: 753

ISBN-13: 3642195504

DOWNLOAD EBOOK

This book has brought 24 groups of experts and active researchers around the world together in image processing and analysis, video processing and analysis, and communications related processing, to present their newest research results, exchange latest experiences and insights, and explore future directions in these important and rapidly evolving areas. It aims at increasing the synergy between academic and industry professionals working in the related field. It focuses on the state-of-the-art research in various essential areas related to emerging technologies, standards and applications on analysis, processing, computing, and communication of multimedia information. The target audience of this book is researchers and engineers as well as graduate students working in various disciplines linked to multimedia analysis, processing and communications, e.g., computer vision, pattern recognition, information technology, image processing, and artificial intelligence. The book is also meant to a broader audience including practicing professionals working in image/video applications such as image processing, video surveillance, multimedia indexing and retrieval, and so on. We hope that the researchers, engineers, students and other professionals who read this book would find it informative, useful and inspirational toward their own work in one way or another.


Layered Wyner-Ziv Video Coding for Noisy Channels

Layered Wyner-Ziv Video Coding for Noisy Channels

Author: Qian Xu

Publisher:

Published: 2005

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The growing popularity of video sensor networks and video celluar phones has generated the need for low-complexity and power-efficient multimedia systems that can handle multiple video input and output streams. While standard video coding techniques fail to satisfy these requirements, distributed source coding is a promising technique for "uplink" applications. Wyner-Ziv coding refers to lossy source coding with side information at the decoder. Based on recent theoretical result on successive Wyner-Ziv coding, we propose in this thesis a practical layered Wyner-Ziv video codec using the DCT, nested scalar quantizer, and irregular LDPC code based Slepian-Wolf coding (or lossless source coding with side information) for noiseless channel. The DCT is applied as an approximation to the conditional KLT, which makes the components of the transformed block conditionally independent given the side information. NSQ is a binning scheme that facilitates layered bit-plane coding of the bin indices while reducing the bit rate. LDPC code based Slepian-Wolf coding exploits the correlation between the quantized version of the source and the side information to achieve further compression. Different from previous works, an attractive feature of our proposed system is that video encoding is done only once but decoding allowed at many lower bit rates without quality loss. For Wyner-Ziv coding over discrete noisy channels, we present a Wyner-Ziv video codec using IRA codes for Slepian-Wolf coding based on the idea of two equivalent channels. For video streaming applications where the channel is packet based, we apply unequal error protection scheme to the embedded Wyner-Ziv coded video stream to find the optimal source-channel coding trade-off for a target transmission rate over packet erasure channel.