Many problems in mechanics involve deformable domains with moving boundaries, including fluid-structure interaction, multiphase flows, flows over soft tissues and textiles, or flows involving accretion/erosion to name but a few. The presence of a moving boundary presents considerable challenges when it comes to modelling and understanding the underlying system dynamics. This proceedings volume collects contributions made at the IUTAM Symposium on Recent Advances in Moving Boundary Problems in Mechanics held in Christchurch, New Zealand in February 2018.
This book presents selected contributions to the 4th International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. The workshop, which was held in Linz, Austria in September 2019, continued a series of international workshops — the Japan-Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures, the Russia-Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines, and the first three editions of the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. The chapters cover a broad spectrum of topics in the field of Advanced Structures and Machines both with respect to theoretical aspects as well as applications to contemporary engineering problems.
Most fluid flows of practical importance are fully three-dimensional, so the non-linear instability properties of three-dimensional flows are of particular interest. In some cases the three-dimensionality may have been caused by a finite amplitude disturbance whilst, more usually, the unperturbed state is three-dimensional. Practical applications where transition is thought to be associated with non-linearity in a three- dimensional flow arise, for example, in aerodynamics (swept wings, engine nacelles, etc.), turbines and aortic blood flow. Here inviscid `cross-flow' disturbances as well as Tollmien-Schlichting and Görtler vortices can all occur simultaneously and their mutual non-linear behaviour must be understood if transition is to be predicted. The non-linear interactions are so complex that usually fully numerical or combined asymptotic/numerical methods must be used. Moreover, in view of the complexity of the instability processes, there is also a growing need for detailed and accurate experimental information. Carefully conducted tests allow us to identify those elements of a particular problem which are dominant. This assists in both the formulation of a relevant theoretical problem and the subsequent physical validation of predictions. It should be noted that the demands made upon the skills of the experimentalist are high and that the tests can be extremely sophisticated - often making use of the latest developments in flow diagnostic techniques, automated high speed data gathering, data analysis, fast processing and presentation.
The IUTAM Symposium on Advances in Nonlinear Stochastic Mechanics, held in Trondheim July 3-7, 1995, was the eighth of a series of IUTAM sponsored symposia which focus on the application of stochastic methods in mechanics. The previous meetings took place in Coventry, UK (1972), Sout'hampton, UK (1976), FrankfurtjOder, Germany (1982), Stockholm, Sweden (1984), Innsbruckjlgls, Austria (1987), Turin, Italy (1991) and San Antonio, Texas (1993). The symposium provided an extraordinary opportunity for scholars to meet and discuss recent advances in stochastic mechanics. The participants represented a wide range of expertise, from pure theoreticians to people primarily oriented toward applications. A significant achievement of the symposium was the very extensive discussions taking place over the whole range from highly theoretical questions to practical engineering applications. Several presentations also clearly demonstrated the substantial progress that has been achieved in recent years in terms of developing and implement ing stochastic analysis techniques for mechanical engineering systems. This aspect was further underpinned by specially invited extended lectures on computational stochastic mechanics, engineering applications of stochastic mechanics, and nonlinear active control. The symposium also reflected the very active and high-quality research taking place in the field of stochastic stability. Ten presentations were given on this topic ofa total of47 papers. A main conclusion that can be drawn from the proceedings of this symposium is that stochastic mechanics as a subject has reached great depth and width in both methodology and applicability.
This volume contains 47 contributions presented at the August 1997 symposium. The contributors discuss basic questions of material modeling, problems encountered in polycrystalline materials, and the transition from the micro- to the macroscale. The special handling of shape memory materials, phase transformations, and damage is emphasized. A couple of papers are devoted to experimental results and the various aspects of numerical treatment. The editors conclude that previously cited problems, though faced from different view points, may often be handled similarly, and that the processing of special cases sensitizes for a more accurate treatment in details. Sample paper topics are the temperature effect on viscoplastic constitutive spins, anisotropic plastic flows, the texture development of aluminum polycrystals under finite plastic deformations, and a new type of thermal ratcheting. No subject index. Annotation copyrighted by Book News, Inc., Portland, OR
Wave propagation is an important topic in engineering sciences, especially, in the field of solid mechanics. A description of wave propagation phenomena is given by Graff [98]: The effect of a sharply applied, localized disturbance in a medium soon transmits or 'spreads' to other parts of the medium. These effects are familiar to everyone, e.g., transmission of sound in air, the spreading of ripples on a pond of water, or the transmission of radio waves. From all wave types in nature, here, attention is focused only on waves in solids. Thus, solely mechanical disturbances in contrast to electro-magnetic or acoustic disturbances are considered. of waves - the compression wave similar to the In solids, there are two types pressure wave in fluids and, additionally, the shear wave. Due to continual reflec tions at boundaries and propagation of waves in bounded solids after some time a steady state is reached. Depending on the influence of the inertia terms, this state is governed by a static or dynamic equilibrium in frequency domain. However, if the rate of onset of the load is high compared to the time needed to reach this steady state, wave propagation phenomena have to be considered.
Actuating materials hold a promise for fast-spreading applications in smart structures and active control systems, and have attracted extensive attention from scientists of both mechanics and materials sciences communities. High performance and stability of actuating materials and structures play a decisive role in their successive applications as sensors and actuators in structural control and robotics. The advances of actuating materials, however, recently encountered a severe reliability issue. For a better understanding toward this issue, scientific efforts are of paramount significance to gain a deep insight into the intricate deformation and failure behaviors of actuating materials. To examine the state of the art in this subject, the general assembly of IUTAM approved in August, 2002 at Cambridge University, UK, a proposal to hold an IUTAM symposium to summarize the relevant research findings. The main themes of the symposium are: (i) the constitutive relations of actuating materials that couple mechanical, electrical, thermal and magnetic properties, as well as incorporate phase transformation and domain switch; (ii) the physical mechanisms of deformation, damage, and fatigue crack growth of actuating materials; (iii) the development of failure-resilient approaches that base on the macro-, meso-, and micro-mechanics analyses; (iv) the investigation of microstructural evolution, stability of phase transformation, and size effects of ferroelectric ceramics, shape memory alloys, actuating polymers, and bio-actuating materials. The above problems represent an exciting challenge and form a research thrust of both materials science and solid mechanics. The IUTAM Symposium (GA.
Phase transition phenomena in solids are of vital interest to physicists, materials scientists, and engineers who need to understand and model the mechanical behavior of solids during various kinds of phase transformations. This volume is a collection of 29 written contributions by distinguished invited speakers from 14 countries to the IUTAM Symposium on Mechanics of Martensitic Phase Transformation in Solids, the first IUTAM Symposium focusing on this topic. It contains basic theoretical and experimental aspects of the recent advances in the mechanics research of martensitic phase transformations. The main topics include microstructure and interfaces, material instability and its propagation, micromechanics approaches, interaction between plasticity and phase transformation, phase transformation in thin films, single and polycrystalline shape memory alloys, shape memory polymers, TRIP steels, etc. Due to the multidisciplinary nature of the research covered, this volume will be of interest to researchers, graduate students and engineers in the field of theoretical and applied mechanics as well as materials science and technology.
This volume constitutes the Proceedings of the IUTAM Symposium on "Analytical and Computational Fracture Mechanics of Non-homogeneous Materials", held in Cardiff from 18th to 22nd June 2001. The Symposium was convened to address and place on record topical issues in analytical and computational aspects of the fracture of non-homogeneous materials as they are approached by specialists in mechanics, materials science and related fields. The expertise represented in the Symposium was accordingly very wide, and many of the world's greatest authorities in their respective fields participated. Given the extensive range and scale of non-homogeneous materials, it had to be focussed to enhance the quality and impact of the Symposium. The range of non-homogeneous materials was limited to those that are inhomogeneous at the macroscopic level and/or exhibit strain softening. The issues of micro to macro scaling were not excluded even within this restricted range which covered materials such as rock, concrete, ceramics and composites on the one hand, and, on the other, those metallic materials whose ductile fracture is strongly influenced by the presence of inhomogeneities. The Symposium remained focussed on fundamental research issues of practical significance. These issues have many common features among seemingly disparate non-homogeneous materials.