Iterative Methods without Inversion

Iterative Methods without Inversion

Author: Anatoly Galperin

Publisher: CRC Press

Published: 2016-11-17

Total Pages: 143

ISBN-13: 1315350742

DOWNLOAD EBOOK

Iterative Methods without Inversion presents the iterative methods for solving operator equations f(x) = 0 in Banach and/or Hilbert spaces. It covers methods that do not require inversions of f (or solving linearized subproblems). The typical representatives of the class of methods discussed are Ulm’s and Broyden’s methods. Convergence analyses of the methods considered are based on Kantorovich’s majorization principle which avoids unnecessary simplifying assumptions like differentiability of the operator or solvability of the equation. These analyses are carried out under a more general assumption about degree of continuity of the operator than traditional Lipschitz continuity: regular continuity. Key Features The methods discussed are analyzed under the assumption of regular continuity of divided difference operator, which is more general and more flexible than the traditional Lipschitz continuity. An attention is given to criterions for comparison of merits of various methods and to the related concept of optimality of a method of certain class. Many publications on methods for solving nonlinear operator equations discuss methods that involve inversion of linearization of the operator, which task is highly problematic in infinite dimensions. Accessible for anyone with minimal exposure to nonlinear functional analysis.


Iterative Methods without Inversion

Iterative Methods without Inversion

Author: Anatoly Galperin

Publisher: CRC Press

Published: 2016-11-17

Total Pages: 241

ISBN-13: 1498758967

DOWNLOAD EBOOK

Iterative Methods without Inversion presents the iterative methods for solving operator equations f(x) = 0 in Banach and/or Hilbert spaces. It covers methods that do not require inversions of f (or solving linearized subproblems). The typical representatives of the class of methods discussed are Ulm’s and Broyden’s methods. Convergence analyses of the methods considered are based on Kantorovich’s majorization principle which avoids unnecessary simplifying assumptions like differentiability of the operator or solvability of the equation. These analyses are carried out under a more general assumption about degree of continuity of the operator than traditional Lipschitz continuity: regular continuity. Key Features The methods discussed are analyzed under the assumption of regular continuity of divided difference operator, which is more general and more flexible than the traditional Lipschitz continuity. An attention is given to criterions for comparison of merits of various methods and to the related concept of optimality of a method of certain class. Many publications on methods for solving nonlinear operator equations discuss methods that involve inversion of linearization of the operator, which task is highly problematic in infinite dimensions. Accessible for anyone with minimal exposure to nonlinear functional analysis.


Iterative Methods for Approximate Solution of Inverse Problems

Iterative Methods for Approximate Solution of Inverse Problems

Author: A.B. Bakushinsky

Publisher: Springer Science & Business Media

Published: 2007-09-28

Total Pages: 298

ISBN-13: 140203122X

DOWNLOAD EBOOK

This volume presents a unified approach to constructing iterative methods for solving irregular operator equations and provides rigorous theoretical analysis for several classes of these methods. The analysis of methods includes convergence theorems as well as necessary and sufficient conditions for their convergence at a given rate. The principal groups of methods studied in the book are iterative processes based on the technique of universal linear approximations, stable gradient-type processes, and methods of stable continuous approximations. Compared to existing monographs and textbooks on ill-posed problems, the main distinguishing feature of the presented approach is that it doesn’t require any structural conditions on equations under consideration, except for standard smoothness conditions. This allows to obtain in a uniform style stable iterative methods applicable to wide classes of nonlinear inverse problems. Practical efficiency of suggested algorithms is illustrated in application to inverse problems of potential theory and acoustic scattering. The volume can be read by anyone with a basic knowledge of functional analysis. The book will be of interest to applied mathematicians and specialists in mathematical modeling and inverse problems.


Iterative Methods for Sparse Linear Systems

Iterative Methods for Sparse Linear Systems

Author: Yousef Saad

Publisher: SIAM

Published: 2003-01-01

Total Pages: 546

ISBN-13: 9780898718003

DOWNLOAD EBOOK

Since the first edition of this book was published in 1996, tremendous progress has been made in the scientific and engineering disciplines regarding the use of iterative methods for linear systems. The size and complexity of the new generation of linear and nonlinear systems arising in typical applications has grown. Solving the three-dimensional models of these problems using direct solvers is no longer effective. At the same time, parallel computing has penetrated these application areas as it became less expensive and standardized. Iterative methods are easier than direct solvers to implement on parallel computers but require approaches and solution algorithms that are different from classical methods. Iterative Methods for Sparse Linear Systems, Second Edition gives an in-depth, up-to-date view of practical algorithms for solving large-scale linear systems of equations. These equations can number in the millions and are sparse in the sense that each involves only a small number of unknowns. The methods described are iterative, i.e., they provide sequences of approximations that will converge to the solution.


Numerical Methods for Solving Inverse Problems of Mathematical Physics

Numerical Methods for Solving Inverse Problems of Mathematical Physics

Author: A. A. Samarskii

Publisher: Walter de Gruyter

Published: 2008-08-27

Total Pages: 453

ISBN-13: 3110205793

DOWNLOAD EBOOK

The main classes of inverse problems for equations of mathematical physics and their numerical solution methods are considered in this book which is intended for graduate students and experts in applied mathematics, computational mathematics, and mathematical modelling.


Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications

Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications

Author: Daniele Bertaccini

Publisher: CRC Press

Published: 2018-02-19

Total Pages: 321

ISBN-13: 1351649612

DOWNLOAD EBOOK

This book describes, in a basic way, the most useful and effective iterative solvers and appropriate preconditioning techniques for some of the most important classes of large and sparse linear systems. The solution of large and sparse linear systems is the most time-consuming part for most of the scientific computing simulations. Indeed, mathematical models become more and more accurate by including a greater volume of data, but this requires the solution of larger and harder algebraic systems. In recent years, research has focused on the efficient solution of large sparse and/or structured systems generated by the discretization of numerical models by using iterative solvers.


Iterative Methods for Solving Nonlinear Equations and Systems

Iterative Methods for Solving Nonlinear Equations and Systems

Author: Juan R. Torregrosa

Publisher: MDPI

Published: 2019-12-06

Total Pages: 494

ISBN-13: 3039219405

DOWNLOAD EBOOK

Solving nonlinear equations in Banach spaces (real or complex nonlinear equations, nonlinear systems, and nonlinear matrix equations, among others), is a non-trivial task that involves many areas of science and technology. Usually the solution is not directly affordable and require an approach using iterative algorithms. This Special Issue focuses mainly on the design, analysis of convergence, and stability of new schemes for solving nonlinear problems and their application to practical problems. Included papers study the following topics: Methods for finding simple or multiple roots either with or without derivatives, iterative methods for approximating different generalized inverses, real or complex dynamics associated to the rational functions resulting from the application of an iterative method on a polynomial. Additionally, the analysis of the convergence has been carried out by means of different sufficient conditions assuring the local, semilocal, or global convergence. This Special issue has allowed us to present the latest research results in the area of iterative processes for solving nonlinear equations as well as systems and matrix equations. In addition to the theoretical papers, several manuscripts on signal processing, nonlinear integral equations, or partial differential equations, reveal the connection between iterative methods and other branches of science and engineering.


Iterative Methods for Ill-posed Problems

Iterative Methods for Ill-posed Problems

Author: Anatoly B. Bakushinsky

Publisher: Walter de Gruyter

Published: 2011

Total Pages: 153

ISBN-13: 3110250640

DOWNLOAD EBOOK

Ill-posed problems are encountered in countless areas of real world science and technology. A variety of processes in science and engineering is commonly modeled by algebraic, differential, integral and other equations. In a more difficult case, it can be systems of equations combined with the associated initial and boundary conditions. Frequently, the study of applied optimization problems is also reduced to solving the corresponding equations. These equations, encountered both in theoretical and applied areas, may naturally be classified as operator equations. The current textbook will focus on iterative methods for operator equations in Hilbert spaces.


Parameter Estimation and Inverse Problems

Parameter Estimation and Inverse Problems

Author: Richard C. Aster

Publisher: Academic Press

Published: 2005-01-11

Total Pages: 316

ISBN-13: 0120656043

DOWNLOAD EBOOK

Preface -- 1. Introduction -- 2. Linear Regression -- 3. Discretizing Continuous Inverse Problems -- 4. Rank Deficiency and Ill-Conditioning -- 5. Tikhonov Regularization -- 6. Iterative Methods -- 7. Other Regularization Techniques -- 8. Fourier Techniques -- 9. Nonlinear Regression -- 10. Nonlinear Inverse Problems -- 11. Bayesian Methods -- Appendix A: Review of Linear Algebra -- Appendix B: Review of Probability and Statistics -- Appendix C: Glossary of Notation -- Bibliography -- IndexLinear Regression -- Discretizing Continuous Inverse Problems -- Rank Deficiency and Ill-Conditioning -- Tikhonov Regularization -- Iterative Methods -- Other Regularization Techniques -- Fourier Techniques -- Nonlinear Regression -- Nonlinear Inverse Problems -- Bayesian Methods.


Numerical Methods for Inverse Scattering Problems

Numerical Methods for Inverse Scattering Problems

Author: Jingzhi Li

Publisher: Springer Nature

Published: 2023-09-07

Total Pages: 373

ISBN-13: 9819937728

DOWNLOAD EBOOK

This book highlights the latest developments on the numerical methods for inverse scattering problems associated with acoustic, electromagnetic, and elastic waves. Inverse scattering problems are concerned with identifying unknown or inaccessible objects by wave probing data, which makes possible many industrial and engineering applications including radar and sonar, medical imaging, nondestructive testing, remote sensing, and geophysical exploration. The mathematical study of inverse scattering problems is an active field of research. This book presents a comprehensive and unified mathematical treatment of various inverse scattering problems mainly from a numerical reconstruction perspective. It highlights the collaborative research outputs by the two groups of the authors yet surveys and reviews many existing results by global researchers in the literature. The book consists of three parts respectively corresponding to the studies on acoustic, electromagnetic, and elastic scattering problems. In each part, the authors start with in-depth theoretical and computational treatments of the forward scattering problems and then discuss various numerical reconstruction schemes for the associated inverse scattering problems in different scenarios of practical interest. In addition, the authors provide an overview of the existing results in the literature by other researchers. This book can serve as a handy reference for researchers or practitioners who are working on or implementing inverse scattering methods. It can also serve as a graduate textbook for research students who are interested in working on numerical algorithms for inverse scattering problems.