Irreducible Geometric Subgroups of Classical Algebraic Groups

Irreducible Geometric Subgroups of Classical Algebraic Groups

Author: Timothy C. Burness,

Publisher: American Mathematical Soc.

Published: 2016-01-25

Total Pages: 100

ISBN-13: 1470414945

DOWNLOAD EBOOK

Let be a simple classical algebraic group over an algebraically closed field of characteristic with natural module . Let be a closed subgroup of and let be a non-trivial irreducible tensor-indecomposable -restricted rational -module such that the restriction of to is irreducible. In this paper the authors classify the triples of this form, where is a disconnected maximal positive-dimensional closed subgroup of preserving a natural geometric structure on .


Irreducible Almost Simple Subgroups of Classical Algebraic Groups

Irreducible Almost Simple Subgroups of Classical Algebraic Groups

Author: Timothy C. Burness

Publisher: American Mathematical Soc.

Published: 2015-06-26

Total Pages: 122

ISBN-13: 147041046X

DOWNLOAD EBOOK

Let be a simple classical algebraic group over an algebraically closed field of characteristic with natural module . Let be a closed subgroup of and let be a nontrivial -restricted irreducible tensor indecomposable rational -module such that the restriction of to is irreducible. In this paper the authors classify the triples of this form, where and is a disconnected almost simple positive-dimensional closed subgroup of acting irreducibly on . Moreover, by combining this result with earlier work, they complete the classification of the irreducible triples where is a simple algebraic group over , and is a maximal closed subgroup of positive dimension.


Groups St Andrews 2017 in Birmingham

Groups St Andrews 2017 in Birmingham

Author: C. M. Campbell

Publisher: Cambridge University Press

Published: 2019-04-11

Total Pages: 510

ISBN-13: 110872874X

DOWNLOAD EBOOK

These proceedings of 'Groups St Andrews 2017' provide a snapshot of the state-of-the-art in contemporary group theory.


Groups of Lie Type and Their Geometries

Groups of Lie Type and Their Geometries

Author: William M. Kantor

Publisher: Cambridge University Press

Published: 1995-01-12

Total Pages: 324

ISBN-13: 052146790X

DOWNLOAD EBOOK

Silk Hope, NC is a buoyant and moving parable in which two good women find, among the hidden, forgotten virtues of the past, a sustenance to carry them into the future.


The Irreducible Subgroups of Exceptional Algebraic Groups

The Irreducible Subgroups of Exceptional Algebraic Groups

Author: Adam R. Thomas

Publisher: American Mathematical Soc.

Published: 2021-06-18

Total Pages: 191

ISBN-13: 1470443376

DOWNLOAD EBOOK

This paper is a contribution to the study of the subgroup structure of excep-tional algebraic groups over algebraically closed fields of arbitrary characteristic. Following Serre, a closed subgroup of a semisimple algebraic group G is called irreducible if it lies in no proper parabolic subgroup of G. In this paper we com-plete the classification of irreducible connected subgroups of exceptional algebraic groups, providing an explicit set of representatives for the conjugacy classes of such subgroups. Many consequences of this classification are also given. These include results concerning the representations of such subgroups on various G-modules: for example, the conjugacy classes of irreducible connected subgroups are determined by their composition factors on the adjoint module of G, with one exception. A result of Liebeck and Testerman shows that each irreducible connected sub-group X of G has only finitely many overgroups and hence the overgroups of X form a lattice. We provide tables that give representatives of each conjugacy class of connected overgroups within this lattice structure. We use this to prove results concerning the subgroup structure of G: for example, when the characteristic is 2, there exists a maximal connected subgroup of G containing a conjugate of every irreducible subgroup A1 of G.


Irreducible Subgroups of Exceptional Algebraic Groups

Irreducible Subgroups of Exceptional Algebraic Groups

Author: Donna M. Testerman

Publisher: American Mathematical Soc.

Published: 1988

Total Pages: 198

ISBN-13: 0821824538

DOWNLOAD EBOOK

Let [italic]Y be a simply-connected, simple algebraic group of exceptional type, defined over an algebraically closed field [italic]k of prime characteristic [italic]p > 0. The main result describes all semisimple, closed connected subgroups of [italic]Y which act irreducibly on some rational [italic]k[italic]Y module [italic]V. This extends work of Dynkin who obtained a similar classification for algebraically closed fields of characteristic 0. The main result has been combined with work of G. Seitz to obtain a classification of the maximal closed connected subgroups of the classical algebraic groups defined over [italic]k.


Cohomological Invariants: Exceptional Groups and Spin Groups

Cohomological Invariants: Exceptional Groups and Spin Groups

Author: Skip Garibaldi

Publisher: American Mathematical Soc.

Published: 2009-06-05

Total Pages: 102

ISBN-13: 0821844040

DOWNLOAD EBOOK

This volume concerns invariants of $G$-torsors with values in mod $p$ Galois cohomology--in the sense of Serre's lectures in the book Cohomological invariants in Galois cohomology--for various simple algebraic groups $G$ and primes $p$. The author determines the invariants for the exceptional groups $F_4$ mod 3, simply connected $E_6$ mod 3, $E_7$ mod 3, and $E_8$ mod 5. He also determines the invariants of $\mathrm{Spin}_n$ mod 2 for $n \leq 12$ and constructs some invariants of $\mathrm{Spin}_{14}$. Along the way, the author proves that certain maps in nonabelian cohomology are surjective. These surjectivities give as corollaries Pfister's results on 10- and 12-dimensional quadratic forms and Rost's theorem on 14-dimensional quadratic forms. This material on quadratic forms and invariants of $\mathrm{Spin}_n$ is based on unpublished work of Markus Rost. An appendix by Detlev Hoffmann proves a generalization of the Common Slot Theorem for 2-Pfister quadratic forms.


Expansion in Finite Simple Groups of Lie Type

Expansion in Finite Simple Groups of Lie Type

Author: Terence Tao

Publisher: American Mathematical Soc.

Published: 2015-04-16

Total Pages: 319

ISBN-13: 1470421968

DOWNLOAD EBOOK

Expander graphs are an important tool in theoretical computer science, geometric group theory, probability, and number theory. Furthermore, the techniques used to rigorously establish the expansion property of a graph draw from such diverse areas of mathematics as representation theory, algebraic geometry, and arithmetic combinatorics. This text focuses on the latter topic in the important case of Cayley graphs on finite groups of Lie type, developing tools such as Kazhdan's property (T), quasirandomness, product estimates, escape from subvarieties, and the Balog-Szemerédi-Gowers lemma. Applications to the affine sieve of Bourgain, Gamburd, and Sarnak are also given. The material is largely self-contained, with additional sections on the general theory of expanders, spectral theory, Lie theory, and the Lang-Weil bound, as well as numerous exercises and other optional material.