Ion Implantation and Activation

Ion Implantation and Activation

Author: Kunihiro Suzuki

Publisher: Bentham Science Publishers

Published: 2013-11-05

Total Pages: 171

ISBN-13: 1608057909

DOWNLOAD EBOOK

Ion Implantation and Activation presents the derivation process of related models in a comprehensive step by step manner starting from the fundamental processes and moving up into the more advanced theories. Ion implantation can be expressed theoretically as a binary collision, and, experimentally using various mathematical functions. Readers can understand how to establish an ion implantation database by combining theory and experimental data. The models described in this ebook can be directly related to practical experimental data with various approaches: physical, empirical or experimental. Readers can also understand the approximations, and assumptions to reach these models. The redistribution and activation of implanted impurities during subsequent thermal processes are also important subjects and they are described in a broad manner with the combination of theory and experiment, even though many of the models are not well established. Chapters in the book explain, in depth, various topics such as Pearson functions, LSS theory, Monte Carlo simulations, Edgeworth Polynomials and much more. This book provides advanced engineering and physics students and researchers with complete and coherent coverage of modern semiconductor process modeling. Readers can also benefit from this volume by acquiring the necessary information to improve contemporary process models by themselves.


Ion Implantation Science and Technology

Ion Implantation Science and Technology

Author: J.F. Ziegler

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 509

ISBN-13: 0323161650

DOWNLOAD EBOOK

Ion Implantation Science and Technology: Second Edition, just like the first edition, serves as both an introduction and tutorial to the science, techniques, and machines involved in the subject. The book is divided into two parts - Part 1: Ion Implantation Science and Part 2: Ion Implantation Technology. Part 1 covers topics such as the stopping and range of ions in solids; ion implantation damage in silicon; experimental annealing and activation; and the measurement on ion implantation. Part 2 includes ion optics and focusing on implanter design; photoresist problems and particle contamination; ion implantation diagnostics and process control; and emission of ionizing radiation from ion implanters. The text is recommended for engineers who would like to be acquainted with the principles and processes behind ion implantation or make studies on the field.


Ion Implantation: Basics to Device Fabrication

Ion Implantation: Basics to Device Fabrication

Author: Emanuele Rimini

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 400

ISBN-13: 1461522595

DOWNLOAD EBOOK

Ion implantation offers one of the best examples of a topic that starting from the basic research level has reached the high technology level within the framework of microelectronics. As the major or the unique procedure to selectively dope semiconductor materials for device fabrication, ion implantation takes advantage of the tremendous development of microelectronics and it evolves in a multidisciplinary frame. Physicists, chemists, materials sci entists, processing, device production, device design and ion beam engineers are all involved in this subject. The present monography deals with several aspects of ion implantation. The first chapter covers basic information on the physics of devices together with a brief description of the main trends in the field. The second chapter is devoted to ion im planters, including also high energy apparatus and a description of wafer charging and contaminants. Yield is a quite relevant is sue in the industrial surrounding and must be also discussed in the academic ambient. The slowing down of ions is treated in the third chapter both analytically and by numerical simulation meth ods. Channeling implants are described in some details in view of their relevance at the zero degree implants and of the available industrial parallel beam systems. Damage and its annealing are the key processes in ion implantation. Chapter four and five are dedicated to this extremely important subject.


Ion Implantation in Semiconductors and Other Materials

Ion Implantation in Semiconductors and Other Materials

Author: Billy Crowder

Publisher: Springer Science & Business Media

Published: 2013-03-13

Total Pages: 644

ISBN-13: 146842064X

DOWNLOAD EBOOK

During the years since the first conference in this series was held at Thousand Oaks, California, in 1970, ion implantation has been an expanding and exciting research area. The advances in this field were so rapid that a second conference convened at Garmisch Partenkirchen, Germany, in 1971. At the present time, our under standing of the ion implantation process in semiconductors such as Si and Ge has reached a stage of maturity and ion implantation techniques are firmly established in semiconductor device technology. The advances in compound semiconductors have not been as rapid. There has also been a shift in emphasis in ion implanta tion research from semiconductors to other materials such as metals and insulators. It was appropriate to increase the scope of the conference and the IIIrd International Conference on Ion Implanta tion in Semiconductors and Other Materials was held at Yorktown Heights, New York, December 11 to 14, 1972. A significant number of the papers presented at this conference dealt with ion implanta tion in metals, insulators, and compound semiconductors. The International Committee responsible for organizing this conference consisted of B. L. Crowder, J. A. Davies, F. H. Eisen, Ph. Glotin, T. Itoh, A. U. MacRae, J. W. Mayer, G. Dearnaley, and I. Ruge. The Conference attracted 180 participants from twelve countries. The success of the Conference was due in large measure to the financial support of our sponsors, Air Force Cambridge Research Laboratories and the Office of Naval Research.


Ion Implantation in Semiconductors

Ion Implantation in Semiconductors

Author: Susumu Namba

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 716

ISBN-13: 1468421514

DOWNLOAD EBOOK

The technique of ion implantation has become a very useful and stable technique in the field of semiconductor device fabrication. This use of ion implantation is being adopted by industry. Another important application is the fundamental study of the physical properties of materials. The First Conference on Ion Implantation in Semiconductors was held at Thousand Oaks, California in 1970. The second conference in this series was held at Garmish-Partenkirchen, Germany, in 1971. At the third conference, which convened at Yorktown Heights, New York in 1973, the emphasis was broadened to include metals and insulators as well as semiconductors. This scope of the conference was still accepted at the fourth conference which was held at Osaka, Japan, in 1974. A huge number of papers had been submitted to this conference. All papers which were presented at the Fourth International Conference on Ion Implantation in Semiconductors and Other Materials are included in this proceedings. The success of this conference was due to technical presentations and discussions of 224 participants from 14 countries as well as to financial support from many companies in Japan. On behalf of the committee, I wish to thank the authors for their excellent papers and the sponsors for their financial support. The International Committee responsible for advising this conference consisted of B.L. Crowder, J.A. Davies, G. Dearna1ey, F.H. Eisen, Ph. G1otin, T. Itoh, A.U. MacRae, J.W. Mayer, S. Namba, I. Ruge, and F.L. Vook.


Ion Implantation Technology

Ion Implantation Technology

Author: Edmund G. Seebauer

Publisher: American Institute of Physics

Published: 2008-12-11

Total Pages: 582

ISBN-13: 9780735405974

DOWNLOAD EBOOK

The conference is focused on recent advances and emerging technologies in semiconductor processing before, during and after ion implantation. The content encompasses fundamental physical understanding, common and novel applications as well as equipment issues, maintenance and design. The primary audience is process engineers in the microelectronics industry. Additional contributions come from academia and other industry segments (automotive, aerospace, and medical device manufacturing).