Inzell Lectures on Orthogonal Polynomials

Inzell Lectures on Orthogonal Polynomials

Author: Wolfgang zu Castell

Publisher: Nova Publishers

Published: 2005

Total Pages: 416

ISBN-13: 9781594541087

DOWNLOAD EBOOK

Based on the success of Fourier analysis and Hilbert space theory, orthogonal expansions undoubtedly count as fundamental concepts of mathematical analysis. Along with the need for highly involved functions systems having special properties and analysis on more complicated domains, harmonic analysis has steadily increased its importance in modern mathematical analysis. Deep connections between harmonic analysis and the theory of special functions have been discovered comparatively late, but since then have been exploited in many directions. The Inzell Lectures focus on the interrelation between orthogonal polynomials and harmonic analysis.


Coimbra Lecture Notes on Orthogonal Polynomials

Coimbra Lecture Notes on Orthogonal Polynomials

Author: Amilcar Jose Pinto Lopes Branquinho

Publisher: Nova Publishers

Published: 2008

Total Pages: 250

ISBN-13: 9781600219726

DOWNLOAD EBOOK

Orthogonal Polynomials and Special Functions (OPSF) have a very rich history, going back to 19th century when mathematicians and physicists tried to solve the most important deferential equations of mathematical physics. Hermite-Padé approximation was also introduced at that time, to prove the transcendence of the remarkable constant e (the basis of the natural logarithm). Since then OPSF has developed to a standard subject within mathematics, which is driven by applications. The applications are numerous, both within mathematics (e.g. statistics, combinatory, harmonic analysis, number theory) and other sciences, such as physics, biology, computer science, chemistry. The main reason for the fact that OPSF has been so successful over the centuries is its usefulness in other branches of mathematics and physics, as well as other sciences. There are many different aspects of OPSF. Some of the most important developments for OPSF are related to the theory of rational approximation of analytic functions, in particular the extension to simultaneous rational approximation to a system of functions. Important tools for rational approximation are Riemann-Hilbert problems, the theory of orthogonal polynomials, logarithmic potential theory, and operator theory for difference operators. This new book presents the latest research in the field.


Laredo Lectures on Orthogonal Polynomials and Special Functions

Laredo Lectures on Orthogonal Polynomials and Special Functions

Author: Renato Alvarez-Nodarse

Publisher: Nova Publishers

Published: 2004

Total Pages: 222

ISBN-13: 9781594540097

DOWNLOAD EBOOK

This new book presents research in orthogonal polynomials and special functions. Recent developments in the theory and accomplishments of the last decade are pointed out and directions for research in the future are identified. The topics covered include matrix orthogonal polynomials, spectral theory and special functions, Asymptotics for orthogonal polynomials via Riemann-Hilbert methods, Polynomial wavelets and Koornwinder polynomials.


Orthogonal Polynomials and Special Functions

Orthogonal Polynomials and Special Functions

Author: Francisco Marcellàn

Publisher: Springer Science & Business Media

Published: 2006-06-19

Total Pages: 432

ISBN-13: 3540310622

DOWNLOAD EBOOK

Special functions and orthogonal polynomials in particular have been around for centuries. Can you imagine mathematics without trigonometric functions, the exponential function or polynomials? In the twentieth century the emphasis was on special functions satisfying linear differential equations, but this has now been extended to difference equations, partial differential equations and non-linear differential equations. The present set of lecture notes containes seven chapters about the current state of orthogonal polynomials and special functions and gives a view on open problems and future directions. The topics are: computational methods and software for quadrature and approximation, equilibrium problems in logarithmic potential theory, discrete orthogonal polynomials and convergence of Krylov subspace methods in numerical linear algebra, orthogonal rational functions and matrix orthogonal rational functions, orthogonal polynomials in several variables (Jack polynomials) and separation of variables, a classification of finite families of orthogonal polynomials in Askey’s scheme using Leonard pairs, and non-linear special functions associated with the Painlevé equations.


Orthogonal Polynomials and Special Functions

Orthogonal Polynomials and Special Functions

Author: Richard Askey

Publisher: SIAM

Published: 1975-01-01

Total Pages: 117

ISBN-13: 9781611970470

DOWNLOAD EBOOK

Originally presented as lectures, the theme of this volume is that one studies orthogonal polynomials and special functions not for their own sake, but to be able to use them to solve problems. The author presents problems suggested by the isometric embedding of projective spaces in other projective spaces, by the desire to construct large classes of univalent functions, by applications to quadrature problems, and theorems on the location of zeros of trigonometric polynomials. There are also applications to combinatorial problems, statistics, and physical problems.


Orthogonal Polynomials

Orthogonal Polynomials

Author: Paul Nevai

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 472

ISBN-13: 9400905017

DOWNLOAD EBOOK

This volume contains the Proceedings of the NATO Advanced Study Institute on "Orthogonal Polynomials and Their Applications" held at The Ohio State University in Columbus, Ohio, U.S.A. between May 22,1989 and June 3,1989. The Advanced Study Institute primarily concentrated on those aspects of the theory and practice of orthogonal polynomials which surfaced in the past decade when the theory of orthogonal polynomials started to experience an unparalleled growth. This progress started with Richard Askey's Regional Confer ence Lectures on "Orthogonal Polynomials and Special Functions" in 1975, and subsequent discoveries led to a substantial revaluation of one's perceptions as to the nature of orthogonal polynomials and their applicability. The recent popularity of orthogonal polynomials is only partially due to Louis de Branges's solution of the Bieberbach conjecture which uses an inequality of Askey and Gasper on Jacobi polynomials. The main reason lies in their wide applicability in areas such as Pade approximations, continued fractions, Tauberian theorems, numerical analysis, probability theory, mathematical statistics, scattering theory, nuclear physics, solid state physics, digital signal processing, electrical engineering, theoretical chemistry and so forth. This was emphasized and convincingly demonstrated during the presentations by both the principal speakers and the invited special lecturers. The main subjects of our Advanced Study Institute included complex orthogonal polynomials, signal processing, the recursion method, combinatorial interpretations of orthogonal polynomials, computational problems, potential theory, Pade approximations, Julia sets, special functions, quantum groups, weighted approximations, orthogonal polynomials associated with root systems, matrix orthogonal polynomials, operator theory and group representations.


Encyclopedia of Special Functions: The Askey-Bateman Project: Volume 2, Multivariable Special Functions

Encyclopedia of Special Functions: The Askey-Bateman Project: Volume 2, Multivariable Special Functions

Author: Tom H. Koornwinder

Publisher: Cambridge University Press

Published: 2020-10-15

Total Pages: 442

ISBN-13: 1108916554

DOWNLOAD EBOOK

This is the second of three volumes that form the Encyclopedia of Special Functions, an extensive update of the Bateman Manuscript Project. Volume 2 covers multivariable special functions. When the Bateman project appeared, study of these was in an early stage, but revolutionary developments began to be made in the 1980s and have continued ever since. World-renowned experts survey these over the course of 12 chapters, each containing an extensive bibliography. The reader encounters different perspectives on a wide range of topics, from Dunkl theory, to Macdonald theory, to the various deep generalizations of classical hypergeometric functions to the several variables case, including the elliptic level. Particular attention is paid to the close relation of the subject with Lie theory, geometry, mathematical physics and combinatorics.


Orthogonal Polynomials of Several Variables

Orthogonal Polynomials of Several Variables

Author: Charles F. Dunkl

Publisher: Cambridge University Press

Published: 2014-08-21

Total Pages: 439

ISBN-13: 1316061906

DOWNLOAD EBOOK

Serving both as an introduction to the subject and as a reference, this book presents the theory in elegant form and with modern concepts and notation. It covers the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains. The approach is a blend of classical analysis and symmetry group theoretic methods. Finite reflection groups are used to motivate and classify symmetries of weight functions and the associated polynomials. This revised edition has been updated throughout to reflect recent developments in the field. It contains 25% new material, including two brand new chapters on orthogonal polynomials in two variables, which will be especially useful for applications, and orthogonal polynomials on the unit sphere. The most modern and complete treatment of the subject available, it will be useful to a wide audience of mathematicians and applied scientists, including physicists, chemists and engineers.


Orthogonal Polynomials

Orthogonal Polynomials

Author: Mama Foupouagnigni

Publisher: Springer Nature

Published: 2020-03-11

Total Pages: 683

ISBN-13: 3030367444

DOWNLOAD EBOOK

This book presents contributions of international and local experts from the African Institute for Mathematical Sciences (AIMS-Cameroon) and also from other local universities in the domain of orthogonal polynomials and applications. The topics addressed range from univariate to multivariate orthogonal polynomials, from multiple orthogonal polynomials and random matrices to orthogonal polynomials and Painlevé equations. The contributions are based on lectures given at the AIMS-Volkswagen Stiftung Workshop on Introduction of Orthogonal Polynomials and Applications held on October 5–12, 2018 in Douala, Cameroon. This workshop, funded within the framework of the Volkswagen Foundation Initiative "Symposia and Summer Schools", was aimed globally at promoting capacity building in terms of research and training in orthogonal polynomials and applications, discussions and development of new ideas as well as development and enhancement of networking including south-south cooperation.