Investigation of Planar Waveguides and Components for Millimeter-wave Integrated Circuits

Investigation of Planar Waveguides and Components for Millimeter-wave Integrated Circuits

Author: Kevin John Webb

Publisher:

Published: 1984

Total Pages: 168

ISBN-13:

DOWNLOAD EBOOK

Several important elements in millimeter-wave integrated circuit systems are studied. Filter-type structures which are composed of a series of discontinuities are employed frequently in such systems. The study of the general discontinuity problem is thus very important. Contents: Uniform Fin-Line Analysis; Moment Method Analysis of Fin-Line Discontinuities; Iterative and Variational Solutions for Fin-Line Discontinuities; Dielectric Waveguide Filters.


Practical Approach to Substrate Integrated Waveguide (SIW) Diplexer: Emerging Research and Opportunities

Practical Approach to Substrate Integrated Waveguide (SIW) Diplexer: Emerging Research and Opportunities

Author: Nwajana, Augustine Onyenwe

Publisher: IGI Global

Published: 2020-02-07

Total Pages: 171

ISBN-13: 1799820866

DOWNLOAD EBOOK

Substrate integrated waveguide (SIW) technology is a twenty-first century transmission line that has evolved recently to open new doors to the development of efficient circuits and devices operating in the microwave and millimeter-wave frequency range. Microstrip circuits and devices are inefficient at high frequency applications and require very stringent manufacturing tolerances when used to implement microwave and millimeter-wave components. This is as a result of the fact that wavelengths are short at higher frequencies. Waveguide circuits and devices are preferred for higher frequency applications, but they are expensive and difficult to manufacture. It is also very challenging to integrate a waveguide device with planar devices in its vicinity. The SIW bridges the gap between the traditional air-filled waveguide and planar transmission lines such as microstrip. Practical Approach to Substrate Integrated Waveguide (SIW) Diplexer: Emerging Research and Opportunities is an essential reference source that discusses the development of efficient circuits and devices operating in the microwave and millimeter-wave frequency range through the use of substrate integrated waveguides. Featuring research on topics such as microstrip resonators, circuit model analysis, and quality factor extraction, this book is ideally designed for researchers, engineers, scientists, developers, scholars, practitioners, educators, policymakers, and students.


Coplanar Waveguide Circuits, Components, and Systems

Coplanar Waveguide Circuits, Components, and Systems

Author: Rainee N. Simons

Publisher: John Wiley & Sons

Published: 2004-04-07

Total Pages: 461

ISBN-13: 0471463930

DOWNLOAD EBOOK

Up-to-date coverage of the analysis and applications of coplanar waveguides to microwave circuits and antennas The unique feature of coplanar waveguides, as opposed to more conventional waveguides, is their uniplanar construction, in which all of the conductors are aligned on the same side of the substrate. This feature simplifies manufacturing and allows faster and less expensive characterization using on-wafer techniques. Coplanar Waveguide Circuits, Components, and Systems is an engineer's complete resource, collecting all of the available data on the subject. Rainee Simons thoroughly discusses propagation parameters for conventional coplanar waveguides and includes valuable details such as the derivation of the fundamental equations, physical explanations, and numerical examples. Coverage also includes: Discontinuities and circuit elements Transitions to other transmission media Directional couplers, hybrids, and magic T Microelectromechanical systems based switches and phase shifters Tunable devices using ferroelectric materials Photonic bandgap structures Printed circuit antennas


Si Waveguide Technology for High Performance Millimeter-wave/terahertz Integrated Systems

Si Waveguide Technology for High Performance Millimeter-wave/terahertz Integrated Systems

Author: Nazy Ranjkesh

Publisher:

Published: 2015

Total Pages: 186

ISBN-13:

DOWNLOAD EBOOK

The terahertz (THZ) spectrum (0.3 - 3 THz) offers new opportunities to a wide range of emerging applications which demand high-quality THz sources, detectors, amplifiers, and integrated circuits. On-chip integration of planar transmission line passive components degrades their performance due to the conduction loss. Therefore, a hybrid integrated technology in which all of the high-quality passive components are implemented using a suitable off-chip planar integrated technology and the active devices are placed on-chip, has become the most promising approach. In this thesis, a low-cost and low-loss silicon-on-glass (SOG) integrated circuit technology is proposed for THz/millimeter-wave (mmW) applications. Highly-resistive intrinsic silicon (Si) is selected as the main guiding region due to its high transparency at mmW/THz frequency ranges and the maturity of Si-devices fabrication. In the proposed technology, all of the passive components and waveguide connections are made of highly-resistive Si on a glass substrate. The proposed technique leads to a high-precision and low-cost fabrication process, wherein the alignment between the sub-structures is automatically achieved during the fabrication process. This is performed by photolithography and dry etching of the entire integrated passive circuit layout through the Si layer of the SOG wafer. The SOG dielectric ridge waveguide, as the basic component of the SOG integrated circuit, is theoretically and experimentally investigated. A test setup is designed to measure propagation characteristics of the proposed SOG waveguide. Measured dispersion diagrams of the SOG dielectric waveguides show average attenuation constants of 0.63 dB/cm, 0.28 dB/cm, and 0.53 dB/cm over the frequency ranges of 55 - 65 GHz, 90 - 110 GHz, and 140 - 170 GHz, respectively. Extending the SOG platform toward the THz range is achieved by new SOG waveguide structures wherein the glass substrates below the Si channels are etched to reduce the effect of greater glass material loss at higher frequencies (i.e., > 200 GHz). To fabricate these structures, the glass substrate is etched in hydrophilic acid before bonding to the Si. Four new SOG configurations, called the suspended SOG, corrugated SOG, rib SOG, and U-SOG waveguides are proposed with their respective fabrication techniques for the THz range of frequencies. In the suspended SOG waveguide, a periodic configuration of Si beams supports the Si guiding channel over the etched grove on the glass substrate. Measurements of two suspended SOG waveguides show low attenuation constants of 0.031 dB/[lambda]0 and 0.042 dB/[lambda]0 (on average) over the frequency ranges of 350 - 500 GHz and 400 - 500 GHz, respectively. It is theoretically demonstrated that the rib SOG and U-SOG waveguides are promising candidates for THz high-density and low-loss integrated circuits. Rib SOG waveguide and U-SOG waveguide test devices are designed over the frequency bands of 0.8 - 0.9 THz and 0.9 - 1.1 THz. The proposed SOG waveguide technology can easily be extended to several THz with no limitations. A new mmW low-loss dielectric phase shifter integrated in the corrugated SOG platform is designed, fabricated, and measured. Phase shifts of 111 ° and 129 ° at frequencies of 85 GHz and 100 GHz, with maximum insertion losses of 0.65 dB and 2.5 dB, are achieved during measurements of the proposed phase shifter. Millimeter-wave integrated SOG tapered antennas are developed and implemented. The idea of a suspended SOG tapered antenna is demonstrated to enhance the radiation efficiency and the gain of the SOG tapered antenna over 110 - 130 GHz. The suspended SOG tapered antenna, which can function under two orthogonal mode excitations, shows measured efficiencies of higher than 90 % for the two vertical polarizations.


Infrared and Millimeter Waves V4

Infrared and Millimeter Waves V4

Author: Kenneth J. Button

Publisher: Elsevier

Published: 2014-04-08

Total Pages: 379

ISBN-13: 032315297X

DOWNLOAD EBOOK

Infrared and Millimeter Waves is a series of books that compiles the work of several authors, with each volume focusing on certain aspects of infrared and millimeter waves, such as sources of radiation, instrumentation, and millimeter systems. This book concerns itself with millimeter systems. Comprised of seven chapters, this book discusses several systems that involve the use of millimeter waves, such as radars and missile guidance systems. The first chapter provides a comprehensive overview of millimeter waves, while the succeeding chapter discusses several technologies that involve millimeter systems, such as radar, missile guidance, and imaging systems. This book will be of great use to researchers and professionals whose work involves infrared and millimeter waves.


Research in Progress

Research in Progress

Author: United States. Army Research Office

Publisher:

Published: 1984

Total Pages: 284

ISBN-13:

DOWNLOAD EBOOK

Vols. for 1977- consist of two parts: Chemistry, biological sciences, engineering sciences, metallurgy and materials science (issued in the spring); and Physics, electronics, mathematics, geosciences (issued in the fall).


Coplanar Microwave Integrated Circuits

Coplanar Microwave Integrated Circuits

Author: Ingo Wolff

Publisher: John Wiley & Sons

Published: 2006-07-11

Total Pages: 558

ISBN-13: 0471121010

DOWNLOAD EBOOK

The tools and techniques to fully leverage coplanar technology Coplanar Microwave Integrated Circuits sets forth the theoretical underpinnings of coplanar waveguides and thoroughly examines the various coplanar components such as discontinuities, lumped elements, resonators, couplers, and filters, which are essential for microwave integrated circuit design. Based on the results of his own research findings, the author effectively demonstrates the many advantages of coplanar waveguide technology for modern circuit design. Following a brief introductory chapter, the text thoroughly covers the material needed for successful design and realization of coplanar microwave circuits, including: * Fundamental transmission properties of coplanar waveguides using a full wave analysis * Detailed analysis of most discontinuities used in coplanar waveguide design * Lumped elements in coplanar technology that are needed in circuit design * Development of software for coplanar circuit design, including a CD-ROM containing a test version of the software for modeling coplanar circuit components and circuits * Application of derived results to build more complex components such as lumped element filters, waveguide filters, millimeter wave filters, end-coupled waveguide structures, waveguide couplers, and Wilkinson couplers for different frequency ranges in coplanar technology The final chapter focuses on special coplanar microwave integrated circuits that have been developed using the software presented in the text. The book concludes with a thought-provoking discussion of the advantages and disadvantages of the coplanar technique. Extensive use of figures and tables helps readers easily digest and visualize complex concepts. A bibliography is included at the end of each chapter for further study and research. Coplanar Microwave Integrated Circuits is recommended for graduate students and engineers in RF microwaves who want to reap all the advantages and possibilities of coplanar technology.