We use a neutrosophic set, instead of an intuitionistic fuzzy because the neutrosophic set is more general, and it allows for independent and partial independent components, while in an intuitionistic fuzzy set, all components are totally dependent. In this article, we present and demonstrate the concept of neutrosophic invariant subgroups. We delve into the exploration of this notion to establish and study the neutrosophic quotient group. Further, we give the concept of a neutrosophic normal subgroup as a novel concept.
Research on algebraic structure of group rings is one of the leading, most sought-after topics in ring theory. The new class of neutrosophic rings defined in this book form a generalization of group rings and semigroup rings.The study of the classes of neutrosophic group neutrosophic rings and S-neutrosophic semigroup neutrosophic rings which form a type of generalization of group rings will throw light on group rings and semigroup rings which are essential substructures of them. A salient feature of this group is the many suggested problems on the new classes of neutrosophic rings, solutions of which will certainly develop some of the still open problems in group rings.Further, neutrosophic matrix rings find applications in neutrosophic models like Neutrosophic Cognitive Maps (NCM), Neutrosophic Relational Maps (NRM), Neutrosophic Bidirectional Memories (NBM) and so on.
In this chapter, we introduce neutrosophic triplet cosets for neutrosophic triplet G-module and neutrosophic triplet quotient G-module. Then, we give some definitions and examples for neutrosophic triplet quotient G-module and neutrosophic triplet cosets. Also, we obtain isomorphism theorems for neutrosophic triplet G-modules and we prove isomorphism theorems for neutrosophic triplet G-modules.
This book presents the advancements and applications of neutrosophics, which are generalizations of fuzzy logic, fuzzy set, and imprecise probability. The neutrosophic logic, neutrosophic set, neutrosophic probability, and neutrosophic statistics are increasingly used in engineering applications (especially for software and information fusion), medicine, military, cybernetics, physics.In the last chapter a soft semantic Web Services agent framework is proposed to facilitate the registration and discovery of high quality semantic Web Services agent. The intelligent inference engine module of soft semantic Web Services agent is implemented using interval neutrosophic logic.
In information technology, the concepts of cost, time, delivery, space, quality, durability, and price have gained greater importance in solving managerial decision-making problems in supply chain models, transportation problems, and inventory control problems. Moreover, competition is becoming tougher in imprecise environments. Neutrosophic sets and logic are gaining significant attention in solving real-life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistency, and indeterminacy. Neutrosophic Sets in Decision Analysis and Operations Research is a critical, scholarly publication that examines various aspects of organizational research through mathematical equations and algorithms and presents neutrosophic theories and their applications in various optimization fields. Featuring a wide range of topics such as information retrieval, decision making, and matrices, this book is ideal for engineers, technicians, designers, mathematicians, practitioners of mathematics in economy and technology, scientists, academicians, professionals, managers, researchers, and students.
Neutrosophic Statistics means statistical analysis of population or sample that has indeterminate (imprecise, ambiguous, vague, incomplete, unknown) data. For example, the population or sample size might not be exactly determinate because of some individuals that partially belong to the population or sample, and partially they do not belong, or individuals whose appurtenance is completely unknown. Also, there are population or sample individuals whose data could be indeterminate. In this book, we develop the 1995 notion of neutrosophic statistics. We present various practical examples. It is possible to define the neutrosophic statistics in many ways, because there are various types of indeterminacies, depending on the problem to solve.
The main objective of this special issue is to divulge the applicability of the Neutrosophic Theory and to explore the possibilities and advantages of neutrosophic tools, through both the presentation of thorough research and case studies in solving social problems in Latin America. The best presentations discussed at the III International Congress of Educational Research and University Innovation, turned into papers, show us the capacity for socialization of neutrosophic knowledge and its link with this science of validation and consolidation of scientific knowledge. This publication with authors from 11 countries that we place in the hands of the international scientific community, constitutes an example of how in Latin America the Neutrosophy is contributing to complex solutions based on the results of scientific research carried out by teachers and students committed to the social responsibility of continuing to progress for the benefit of humanity.
A neutrosophic set was proposed as an approach to study neutral uncertain information. It is characterized through three memberships, T, I and F, such that these independent functions stand for the truth, indeterminate, and false-membership degrees of an object. The neutrosophic set presents a symmetric form since truth enrolment T is symmetric to its opposite false enrolment F with respect to indeterminacy enrolment I that acts as an axis of symmetry.
In this book, we define several new neutrosophic algebraic structures and their related properties. The main focus of this book is to study the important class of neutrosophic rings such as neutrosophic LA-semigroup ring, neutrosophic loop ring, neutrosophic groupoid ring and so on. We also construct their generalization in each case to study these neutrosophic algebraic structures in a broader sense. The indeterminacy element “I“ gives rise to a bigger algebraic structure than the classical algebraic structures. It mainly classifies the algebraic structures in three categories such as: neutrosophic algebraic structures, strong neutrosophic algebraic structures, and classical algebraic structures respectively. This reveals the fact that a classic algebraic structure is a part of the neutrosophic algebraic structures. This opens a new way for the researcher to think in a broader way to visualize these vast neutrosophic algebraic structures.
This ninth volume of Collected Papers includes 87 papers comprising 982 pages on Neutrosophic Theory and its applications in Algebra, written between 2014-2022 by the author alone or in collaboration with the following 81 co-authors (alphabetically ordered) from 19 countries: E.O. Adeleke, A.A.A. Agboola, Ahmed B. Al-Nafee, Ahmed Mostafa Khalil, Akbar Rezaei, S.A. Akinleye, Ali Hassan, Mumtaz Ali, Rajab Ali Borzooei , Assia Bakali, Cenap Özel, Victor Christianto, Chunxin Bo, Rakhal Das, Bijan Davvaz, R. Dhavaseelan, B. Elavarasan, Fahad Alsharari, T. Gharibah, Hina Gulzar, Hashem Bordbar, Le Hoang Son, Emmanuel Ilojide, Tèmítópé Gbóláhàn Jaíyéolá, M. Karthika, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Huma Khan, Madad Khan, Mohsin Khan, Hee Sik Kim, Seon Jeong Kim, Valeri Kromov, R. M. Latif, Madeleine Al-Tahan, Mehmat Ali Ozturk, Minghao Hu, S. Mirvakili, Mohammad Abobala, Mohammad Hamidi, Mohammed Abdel-Sattar, Mohammed A. Al Shumrani, Mohamed Talea, Muhammad Akram, Muhammad Aslam, Muhammad Aslam Malik, Muhammad Gulistan, Muhammad Shabir, G. Muhiuddin, Memudu Olaposi Olatinwo, Osman Anis, Choonkil Park, M. Parimala, Ping Li, K. Porselvi, D. Preethi, S. Rajareega, N. Rajesh, Udhayakumar Ramalingam, Riad K. Al-Hamido, Yaser Saber, Arsham Borumand Saeid, Saeid Jafari, Said Broumi, A.A. Salama, Ganeshsree Selvachandran, Songtao Shao, Seok-Zun Song, Tahsin Oner, M. Mohseni Takallo, Binod Chandra Tripathy, Tugce Katican, J. Vimala, Xiaohong Zhang, Xiaoyan Mao, Xiaoying Wu, Xingliang Liang, Xin Zhou, Yingcang Ma, Young Bae Jun, Juanjuan Zhang.