Integrates traditional statistical data analysis with new computational experimentation capabilities and concepts of algorithmic complexity and chaotic behavior in nonlinear dynamic systems, offering tools for the study of random phenomena occurring in engineering and the natural, life, and social sciences. Each chapter presents experiments, exercises, and projects using the Mathematica Uncertain Virtual Worlds software packages. Large and original real-life data sets are introduced and analyzed as a model for independent study. Includes brief tutorials on using Mathematica programs. Intended as a text for an introductory level statistics course. Prerequisites include calculus and basic computer programming. Annotation copyrighted by Book News, Inc., Portland, OR
Lean production, has long been regarded as critical to business success in many industries. Over the last ten years, instruction in six sigma has been increasingly linked with learning about the elements of lean production. Introduction to Engineering Statistics and Lean Sigma builds on the success of its first edition (Introduction to Engineering Statistics and Six Sigma) to reflect the growing importance of the "lean sigma" hybrid. As well as providing detailed definitions and case studies of all six sigma methods, Introduction to Engineering Statistics and Lean Sigma forms one of few sources on the relationship between operations research techniques and lean sigma. Readers will be given the information necessary to determine which sigma methods to apply in which situation, and to predict why and when a particular method may not be effective. Methods covered include: • control charts and advanced control charts, • failure mode and effects analysis, • Taguchi methods, • gauge R&R, and • genetic algorithms. The second edition also greatly expands the discussion of Design For Six Sigma (DFSS), which is critical for many organizations that seek to deliver desirable products that work first time. It incorporates recently emerging formulations of DFSS from industry leaders and offers more introductory material on the design of experiments, and on two level and full factorial experiments, to help improve student intuition-building and retention. The emphasis on lean production, combined with recent methods relating to Design for Six Sigma (DFSS), makes Introduction to Engineering Statistics and Lean Sigma a practical, up-to-date resource for advanced students, educators, and practitioners.
The Accreditation Board for Engineering and Technology (ABET) introduced a criterion starting with their 1992-1993 site visits that "Students must demonstrate a knowledge of the application of statistics to engineering problems." Since most engineering curricula are filled with requirements in their own discipline, they generally do not have time for a traditional two semesters of probability and statistics. Attempts to condense that material into a single semester often results in so much time being spent on probability that the statistics useful for designing and analyzing engineering/scientific experiments is never covered. In developing a one-semester course whose purpose was to introduce engineering/scientific students to the most useful statistical methods, this book was created to satisfy those needs. - Provides the statistical design and analysis of engineering experiments & problems - Presents a student-friendly approach through providing statistical models for advanced learning techniques - Covers essential and useful statistical methods used by engineers and scientists
Introductory Statistics 2e provides an engaging, practical, and thorough overview of the core concepts and skills taught in most one-semester statistics courses. The text focuses on diverse applications from a variety of fields and societal contexts, including business, healthcare, sciences, sociology, political science, computing, and several others. The material supports students with conceptual narratives, detailed step-by-step examples, and a wealth of illustrations, as well as collaborative exercises, technology integration problems, and statistics labs. The text assumes some knowledge of intermediate algebra, and includes thousands of problems and exercises that offer instructors and students ample opportunity to explore and reinforce useful statistical skills. This is an adaptation of Introductory Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.
This practical text is an essential source of information for those wanting to know how to deal with the variability that exists in every engineering situation. Using typical engineering data, it presents the basic statistical methods that are relevant, in simple numerical terms. In addition, statistical terminology is translated into basic English. In the past, a lack of communication between engineers and statisticians, coupled with poor practical skills in quality management and statistical engineering, was damaging to products and to the economy. The disastrous consequence of setting tight tolerances without regard to the statistical aspect of process data is demonstrated. This book offers a solution, bridging the gap between statistical science and engineering technology to ensure that the engineers of today are better equipped to serve the manufacturing industry. Inside, you will find coverage on: the nature of variability, describing the use of formulae to pin down sources of variation; engineering design, research and development, demonstrating the methods that help prevent costly mistakes in the early stages of a new product; production, discussing the use of control charts, and; management and training, including directing and controlling the quality function. The Engineering section of the index identifies the role of engineering technology in the service of industrial quality management. The Statistics section identifies points in the text where statistical terminology is used in an explanatory context. Engineers working on the design and manufacturing of new products find this book invaluable as it develops a statistical method by which they can anticipate and resolve quality problems before launching into production. This book appeals to students in all areas of engineering and also managers concerned with the quality of manufactured products. Academic engineers can use this text to teach their students basic practical skills in quality management and statistical engineering, without getting involved in the complex mathematical theory of probability on which statistical science is dependent.
A handbook for those seeking engineering information and quantitative data for designing, developing, constructing, and testing equipment. Covers the planning of experiments, the analyzing of extreme-value data; and more. 1966 edition. Index. Includes 52 figures and 76 tables.
The tools and techniques used in Design of Experiments (DoE) have been proven successful in meeting the challenge of continuous improvement in many manufacturing organisations over the last two decades. However research has shown that application of this powerful technique in many companies is limited due to a lack of statistical knowledge required for its effective implementation.Although many books have been written on this subject, they are mainly by statisticians, for statisticians and not appropriate for engineers. Design of Experiments for Engineers and Scientists overcomes the problem of statistics by taking a unique approach using graphical tools. The same outcomes and conclusions are reached as through using statistical methods and readers will find the concepts in this book both familiar and easy to understand.This new edition includes a chapter on the role of DoE within Six Sigma methodology and also shows through the use of simple case studies its importance in the service industry. It is essential reading for engineers and scientists from all disciplines tackling all kinds of manufacturing, product and process quality problems and will be an ideal resource for students of this topic. - Written in non-statistical language, the book is an essential and accessible text for scientists and engineers who want to learn how to use DoE - Explains why teaching DoE techniques in the improvement phase of Six Sigma is an important part of problem solving methodology - New edition includes a full chapter on DoE for services as well as case studies illustrating its wider application in the service industry
Statistic: A Concise Mathematical Introduction for Students and Scientists offers a one academic term text that prepares the student to broaden their skills in statistics, probability and inference, prior to selecting their follow-on courses in their chosen fields, whether it be engineering, computer science, programming, data sciences, business or economics. The book places focus early on continuous measurements, as well as discrete random variables. By invoking simple and intuitive models and geometric probability, discrete and continuous experiments and probabilities are discussed throughout the book in a natural way. Classical probability, random variables, and inference are discussed, as well as material on understanding data and topics of special interest. Topics discussed include: • Classical equally likely outcomes • Variety of models of discrete and continuous probability laws • Likelihood function and ratio • Inference • Bayesian statistics With the growth in the volume of data generated in many disciplines that is enabling the growth in data science, companies now demand statistically literate scientists and this textbook is the answer, suited for undergraduates studying science or engineering, be it computer science, economics, life sciences, environmental, business, amongst many others. Basic knowledge of bivariate calculus, R language, Matematica and JMP is useful, however there is an accompanying website including sample R and Mathematica code to help instructors and students.
This textbook may be downloaded as a free PDF on the project's website, and the paperback is sold royalty-free. OpenIntro develops free textbooks and course resources for introductory statistics that exceeds the quality standards of traditional textbooks and resources, and that maximizes accessibility options for the typical student. The approach taken in this textbooks differs from OpenIntro Statistics in its introduction to inference. The foundations for inference are provided using randomization and simulation methods. Once a solid foundation is formed, a transition is made to traditional approaches, where the normal and t distributions are used for hypothesis testing and the construction of confidence intervals.