Now available in paperback, this book is organized in a way that emphasizes both the theory and applications of the various variance estimating techniques. Results are often presented in the form of theorems; proofs are deleted when trivial or when a reference is readily available. It applies to large, complex surveys; and to provide an easy reference for the survey researcher who is faced with the problem of estimating variances for real survey data.
"This book focuses on the practical aspects of modern and robust statistical methods. The increased accuracy and power of modern methods, versus conventional approaches to the analysis of variance (ANOVA) and regression, is remarkable. Through a combination of theoretical developments, improved and more flexible statistical methods, and the power of the computer, it is now possible to address problems with standard methods that seemed insurmountable only a few years ago"--
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. ". . .Variance Components is an excellent book. It is organized and well written, and provides many references to a variety of topics. I recommend it to anyone with interest in linear models." —Journal of the American Statistical Association "This book provides a broad coverage of methods for estimating variance components which appeal to students and research workers . . . The authors make an outstanding contribution to teaching and research in the field of variance component estimation." —Mathematical Reviews "The authors have done an excellent job in collecting materials on a broad range of topics. Readers will indeed gain from using this book . . . I must say that the authors have done a commendable job in their scholarly presentation." —Technometrics This book focuses on summarizing the variability of statistical data known as the analysis of variance table. Penned in a readable style, it provides an up-to-date treatment of research in the area. The book begins with the history of analysis of variance and continues with discussions of balanced data, analysis of variance for unbalanced data, predictions of random variables, hierarchical models and Bayesian estimation, binary and discrete data, and the dispersion mean model.
Developed from lecture notes and ready to be used for a course on the graduate level, this concise text aims to introduce the fundamental concepts of nonparametric estimation theory while maintaining the exposition suitable for a first approach in the field.
Mixed modelling is one of the most promising and exciting areas ofstatistical analysis, enabling more powerful interpretation of datathrough the recognition of random effects. However, many perceivemixed modelling as an intimidating and specialized technique. Thisbook introduces mixed modelling analysis in a simple andstraightforward way, allowing the reader to apply the techniqueconfidently in a wide range of situations. Introduction to Mixed Modelling shows that mixedmodelling is a natural extension of the more familiar statisticalmethods of regression analysis and analysis of variance. In doingso, it provides the ideal introduction to this importantstatistical technique for those engaged in the statistical analysisof data. This essential book: Demonstrates the power of mixed modelling in a wide range ofdisciplines, including industrial research, social sciences,genetics, clinical research, ecology and agriculturalresearch. Illustrates how the capabilities of regression analysis can becombined with those of ANOVA by the specification of a mixedmodel. Introduces the criterion of Restricted Maximum Likelihood(REML) for the fitting of a mixed model to data. Presents the application of mixed model analysis to a widerange of situations and explains how to obtain and interpret BestLinear Unbiased Predictors (BLUPs). Features a supplementary website containing solutions toexercises, further examples, and links to the computer softwaresystems GenStat and R. This book provides a comprehensive introduction to mixedmodelling, ideal for final year undergraduate students,postgraduate students and professional researchers alike. Readerswill come from a wide range of scientific disciplines includingstatistics, biology, bioinformatics, medicine, agriculture,engineering, economics, and social sciences.
This text presents a comprehensive treatment of basic statistical methods and their applications. It focuses on the analysis of variance and regression, but also addressing basic ideas in experimental design and count data. The book has four connecting themes: similarity of inferential procedures, balanced one-way analysis of variance, comparison of models, and checking assumptions. Most inferential procedures are based on identifying a scalar parameter of interest, estimating that parameter, obtaining the standard error of the estimate, and identifying the appropriate reference distribution. Given these items, the inferential procedures are identical for various parameters. Balanced one-way analysis of variance has a simple, intuitive interpretation in terms of comparing the sample variance of the group means with the mean of the sample variance for each group. All balanced analysis of variance problems are considered in terms of computing sample variances for various group means. Comparing different models provides a structure for examining both balanced and unbalanced analysis of variance problems and regression problems. Checking assumptions is presented as a crucial part of every statistical analysis. Examples using real data from a wide variety of fields are used to motivate theory. Christensen consistently examines residual plots and presents alternative analyses using different transformation and case deletions. Detailed examination of interactions, three factor analysis of variance, and a split-plot design with four factors are included. The numerous exercises emphasize analysis of real data. Senior undergraduate and graduate students in statistics and graduate students in other disciplines using analysis of variance, design of experiments, or regression analysis will find this book useful.
Introductory Business Statistics 2e aligns with the topics and objectives of the typical one-semester statistics course for business, economics, and related majors. The text provides detailed and supportive explanations and extensive step-by-step walkthroughs. The author places a significant emphasis on the development and practical application of formulas so that students have a deeper understanding of their interpretation and application of data. Problems and exercises are largely centered on business topics, though other applications are provided in order to increase relevance and showcase the critical role of statistics in a number of fields and real-world contexts. The second edition retains the organization of the original text. Based on extensive feedback from adopters and students, the revision focused on improving currency and relevance, particularly in examples and problems. This is an adaptation of Introductory Business Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.
This second, much enlarged edition by Lehmann and Casella of Lehmann's classic text on point estimation maintains the outlook and general style of the first edition. All of the topics are updated, while an entirely new chapter on Bayesian and hierarchical Bayesian approaches is provided, and there is much new material on simultaneous estimation. Each chapter concludes with a Notes section which contains suggestions for further study. This is a companion volume to the second edition of Lehmann's "Testing Statistical Hypotheses".
This guide to small area estimation aims to help users compile more reliable granular or disaggregated data in cost-effective ways. It explains small area estimation techniques with examples of how the easily accessible R analytical platform can be used to implement them, particularly to estimate indicators on poverty, employment, and health outcomes. The guide is intended for staff of national statistics offices and for other development practitioners. It aims to help them to develop and implement targeted socioeconomic policies to ensure that the vulnerable segments of societies are not left behind, and to monitor progress toward the Sustainable Development Goals.