Basic Engineering Plasticity

Basic Engineering Plasticity

Author: David Rees

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 526

ISBN-13: 0080470904

DOWNLOAD EBOOK

Plasticity is concerned with understanding the behavior of metals and alloys when loaded beyond the elastic limit, whether as a result of being shaped or as they are employed for load bearing structures. Basic Engineering Plasticity delivers a comprehensive and accessible introduction to the theories of plasticity. It draws upon numerical techniques and theoretical developments to support detailed examples of the application of plasticity theory. This blend of topics and supporting textbook features ensure that this introduction to the science of plasticity will be valuable for a wide range of mechanical and manufacturing engineering students and professionals. - Brings together the elements of the mechanics of plasticity most pertinent to engineers, at both the micro- and macro-levels - Covers the theory and application of topics such as Limit Analysis, Slip Line Field theory, Crystal Plasticity, Sheet and Bulk Metal Forming, as well as the use of Finite Element Analysis - Clear and well-organized with extensive worked engineering application examples, and end of chapter exercises


Plasticity Theory

Plasticity Theory

Author: Jacob Lubliner

Publisher: Courier Corporation

Published: 2013-04-22

Total Pages: 548

ISBN-13: 0486318206

DOWNLOAD EBOOK

The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and geotechnical engineers, metallurgists and others. The necessary mathematics and basic mechanics and thermodynamics are covered in an introductory chapter, making the book a self-contained text suitable for advanced undergraduates and graduate students, as well as a reference for practitioners of solid mechanics.


Continuum Theory of Plasticity

Continuum Theory of Plasticity

Author: Akhtar S. Khan

Publisher: John Wiley & Sons

Published: 1995-02-28

Total Pages: 434

ISBN-13: 9780471310433

DOWNLOAD EBOOK

The only modern, up-to-date introduction to plasticity Despite phenomenal progress in plasticity research over the past fifty years, introductory books on plasticity have changed very little. To meet the need for an up-to-date introduction to the field, Akhtar S. Khan and Sujian Huang have written Continuum Theory of Plasticity--a truly modern text which offers a continuum mechanics approach as well as a lucid presentation of the essential classical contributions. The early chapters give the reader a review of elementary concepts of plasticity, the necessary background material on continuum mechanics, and a discussion of the classical theory of plasticity. Recent developments in the field are then explored in sections on the Mroz Multisurface model, the Dafalias and Popov Two Surface model, the non-linear kinematic hardening model, the endochronic theory of plasticity, and numerous topics in finite deformation plasticity theory and strain space formulation for plastic deformation. Final chapters introduce the fundamentals of the micromechanics of plastic deformation and the analytical coupling between deformation of individual crystals and macroscopic material response of the polycrystal aggregate. For graduate students and researchers in engineering mechanics, mechanical, civil, and aerospace engineering, Continuum Theory of Plasticity offers a modern, comprehensive introduction to the entire subject of plasticity.


Plasticity for Structural Engineers

Plasticity for Structural Engineers

Author: Wai-Fah Chen

Publisher: J. Ross Publishing

Published: 2007-02-15

Total Pages: 625

ISBN-13: 1932159754

DOWNLOAD EBOOK

J. Ross Publishing Classics are world-renowned texts and monographs written by preeminent scholars. These books are suitable for students, researchers, professionals and libraries.


Fundamentals of Engineering Plasticity

Fundamentals of Engineering Plasticity

Author: William F. Hosford

Publisher: Cambridge University Press

Published: 2013-07-22

Total Pages: 277

ISBN-13: 1107355656

DOWNLOAD EBOOK

William Hosford's book is ideal for those involved in designing sheet metal forming processes. Knowledge of plasticity is essential for the computer simulation of metal forming processes and understanding the advances in plasticity theory is key to formulating sound analyses. The author makes the subject simple by avoiding notations used by specialists in mechanics. R. Hill's authoritative book, Mathematical Theory of Plasticity (1950), presented a comprehensive treatment of continuum plasticity theory up to that time; much of the treatment in this book covers the same ground, but focuses on more practical topics. Hosford has included recent developments in continuum theory, including a newer treatment of anisotropy that has resulted from calculations of yielding based on crystallography, analysis of the role of defects, and forming limit diagrams. A much greater emphasis is placed on deformation mechanisms and the book also includes chapters on slip and dislocation theory and twinning.


Engineering Plasticity

Engineering Plasticity

Author: C. R. Calladine

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 337

ISBN-13: 1483145751

DOWNLOAD EBOOK

Engineering Plasticity deals with certain features of the theory of plasticity that can be applied to engineering design. Topics covered range from specification of an ideal plastic material to the behavior of structures made of idealized elastic-plastic material, theorems of plastic theory, and rotating discs, along with torsion, indentation problems, and slip-line fields. This book consists of 12 chapters and begins by providing an engineering background for the theory of plasticity, with emphasis on the use of metals in structural engineering; the nature of physical theories; and the conceptual simplicity and power of plastic theory. The next chapter explains how to set up a model of the plastic behavior of metal for use in analysis and design of structures and forming processes, paying particular attention to the plastic deformation that occurs when a specimen of metal is stressed. Subsequent chapters focus on the behavior of a simple structure made of elastic-plastic material; theorems of plastic theory; rotating discs; and indentation problems. Torsion, slip-line fields, and circular plates under transverse loading are also discussed, together with wire-drawing and extrusion and the effects of changes in geometry on structure. This monograph is written primarily for engineering students.


Introduction to Computational Plasticity

Introduction to Computational Plasticity

Author: Fionn Dunne

Publisher: Oxford University Press

Published: 2005-06-09

Total Pages: 259

ISBN-13: 0198568266

DOWNLOAD EBOOK

This book gives an introduction to computational plasticity and includes the kinematics of large deformations, together with relevant continuum mechanics. Central to the book is its focus on computational plasticity, and we cover an introduction to the finite element method which includes both quasi-static and dynamic problems. We then go on to describe explicit and implicit implementations of plasticity models in to finite element software. Throughout the book, we describe thegeneral, multiaxial form of the theory but uniquely, wherever possible, reduce the equations to their simplest, uniaxial form to develop understanding of the general theory and, we hope, physical insight. We provide several examples of implicit and explicit implementations of von Mises time-independentand visco-plasticity in to the commercial code ABAQUS (including the fortran coding), which should prove invaluable to research students and practising engineers developing ABAQUS 'UMATs'. The book bridges the gap between undergraduate material on plasticity and existing advanced texts on nonlinear computational mechanics, which makes it ideal for students and practising engineers alike. It introduces a range of engineering applications, including superplasticity, porous plasticity, cyclicplasticity and thermo-mechanical fatigue, to emphasize the subject's relevance and importance.


Engineering Plasticity

Engineering Plasticity

Author: Z. R. Wang

Publisher: John Wiley & Sons

Published: 2018-05-14

Total Pages: 399

ISBN-13: 1119237300

DOWNLOAD EBOOK

An all-in-one guide to the theory and applications of plasticity in metal forming, featuring examples from the automobile and aerospace industries Provides a solid grounding in plasticity fundamentals and material properties Features models, theorems and analysis of processes and relationships related to plasticity, supported by extensive experimental data Offers a detailed discussion of recent advances and applications in metal forming


Plasticity

Plasticity

Author: P.M. Dixit

Publisher: CRC Press

Published: 2014-10-23

Total Pages: 606

ISBN-13: 1466506180

DOWNLOAD EBOOK

Explores the Principles of Plasticity Most undergraduate programs lack an undergraduate plasticity theory course, and many graduate programs in design and manufacturing lack a course on plasticity—leaving a number of engineering students without adequate information on the subject. Emphasizing stresses generated in the material and its effect, Plasticity: Fundamentals and Applications effectively addresses this need. This book fills a void by introducing the basic fundamentals of solid mechanics of deformable bodies. It provides a thorough understanding of plasticity theory, introduces the concepts of plasticity, and discusses relevant applications. Studies the Effects of Forces and Motions on Solids The authors make a point of highlighting the importance of plastic deformation, and also discuss the concepts of elasticity (for a clear understanding of plasticity, the elasticity theory must also be understood). In addition, they present information on updated Lagrangian and Eulerian formulations for the modeling of metal forming and machining. Topics covered include: Stress Strain Constitutive relations Fracture Anisotropy Contact problems Plasticity: Fundamentals and Applications enables students to understand the basic fundamentals of plasticity theory, effectively use commercial finite-element (FE) software, and eventually develop their own code. It also provides suitable reference material for mechanical/civil/aerospace engineers, material processing engineers, applied mechanics researchers, mathematicians, and other industry professionals.


Basics of Continuum Plasticity

Basics of Continuum Plasticity

Author: Kwansoo Chung

Publisher: Springer

Published: 2018-05-02

Total Pages: 360

ISBN-13: 9811083061

DOWNLOAD EBOOK

This book describes the basic principles of plasticity for students and engineers who wish to perform plasticity analyses in their professional lives, and provides an introduction to the application of plasticity theories and basic continuum mechanics in metal forming processes. This book consists of three parts. The first part deals with the characteristics of plasticity and instability under simple tension or compression and plasticity in beam bending and torsion. The second part is designed to provide the basic principles of continuum mechanics, and the last part presents an extension of one-dimensional plasticity to general three-dimensional laws based on the fundamentals of continuum mechanics. Though most parts of the book are written in the context of general plasticity, the last two chapters are specifically devoted to sheet metal forming applications. The homework problems included are designed to reinforce understanding of the concepts involved. This book may be used as a textbook for a one semester course lasting fourteen weeks or longer. This book is intended to be self-sufficient such that readers can study it independently without taking another formal course. However, there are some prerequisites before starting this book, which include a course on engineering mathematics and an introductory course on solid mechanics.