The fourth edition includes new developments, in particular a new section on the double beta decay including a discussion of the possibility of a neutrinoless decay and its implications for the standard model.
The original edition of Introduction to Nuclear and Particle Physics was used with great success for single-semester courses on nuclear and particle physics offered by American and Canadian universities at the undergraduate level. It was also translated into German, and used overseas. Being less formal but well-written, this book is a good vehicle for learning the more intuitive rather than formal aspects of the subject. It is therefore of value to scientists with a minimal background in quantum mechanics, but is sufficiently substantive to have been recommended for graduate students interested in the fields covered in the text.In the second edition, the material begins with an exceptionally clear development of Rutherford scattering and, in the four following chapters, discusses sundry phenomenological issues concerning nuclear properties and structure, and general applications of radioactivity and of the nuclear force. This is followed by two chapters dealing with interactions of particles in matter, and how these characteristics are used to detect and identify such particles. A chapter on accelerators rounds out the experimental aspects of the field. The final seven chapters deal with elementary-particle phenomena, both before and after the realization of the Standard Model. This is interspersed with discussion of symmetries in classical physics and in the quantum domain, bringing into full focus the issues concerning CP violation, isotopic spin, and other symmetries. The final three chapters are devoted to the Standard Model and to possibly new physics beyond it, emphasizing unification of forces, supersymmetry, and other exciting areas of current research.The book contains several appendices on related subjects, such as special relativity, the nature of symmetry groups, etc. There are also many examples and problems in the text that are of value in gauging the reader's understanding of the material.
This undergraduate textbook breaks down the basics of Nuclear Structure and modern Particle Physics. Based on a comprehensive set of course notes, it covers all the introductory material and latest research developments required by third- and fourth-year physics students. The textbook is divided into two parts. Part I deals with Nuclear Structure, while Part II delves into Particle Physics. Each section contains the most recent science in the field, including experimental data and research on the properties of the top quark and Higgs boson. Detailed mathematical derivations are provided where necessary to helps students grasp the physics at a deeper level. Many of these have been conveniently placed in the Appendices and can be omitted if desired. Each chapter ends with a brief summary and includes a number of practice problems, the answers to which are also provided.
An accessible introduction to nuclear and particle physics with equal coverage of both topics, this text covers all the standard topics in particle and nuclear physics thoroughly and provides a few extras, including chapters on experimental methods; applications of nuclear physics including fission, fusion and biomedical applications; and unsolved problems for the future. It includes basic concepts and theory combined with current and future applications. An excellent resource for physics and astronomy undergraduates in higher-level courses, this text also serves well as a general reference for graduate studies.
This book is intended for undergraduate or beginning graduate students. The net outcome is material to cover one integrated course on Nuclear and Particle Physics as well as Astrophysics.There are many advantages in teaching all these subjects together as they have become increasingly inseparable. From a theoretical point of view, understanding the similarities between atoms, nuclei and other hadrons and applying analogs from one to the other have been very effective in research and they have led to the development of all these fields. From an experimental point of view, a high energy experimentalist must understand nuclear physics, if he or she wants to construct new devices, like detectors, etc., appropriate for observing new high energy phenomena. Furthermore, an understanding of certain areas of astrophysics and the physics of the cosmos, demands a good grasp of both nuclear and particle physics.This book is intended as a menu from which the reader can pick material according to his or her taste and interests. The authors inserted proper cross references to make a specific selection by the reader from this menu as easily digestible as possible. The authors supplied sets of problems with varying degree of complexity, accompanied by hints or a sketch of the solution, if needed, in most chapters.
A comprehensive, unified treatment of present-day nuclear physics-the fresh edition of a classic text/reference. "A fine and thoroughly up-to-date textbook on nuclear physics . . . most welcome." -Physics Today (on the First Edition). What sets Introductory Nuclear Physics apart from other books on the subject is its presentation of nuclear physics as an integral part of modern physics. Placing the discipline within a broad historical and scientific context, it makes important connections to other fields such as elementary particle physics and astrophysics. Now fully revised and updated, this Second Edition explores the changing directions in nuclear physics, emphasizing new developments and current research-from superdeformation to quark-gluon plasma. Author Samuel S.M. Wong preserves those areas that established the First Edition as a standard text in university physics departments, focusing on what is exciting about the discipline and providing a concise, thorough, and accessible treatment of the fundamental aspects of nuclear properties. In this new edition, Professor Wong: * Includes a chapter on heavy-ion reactions-from high-spin states to quark-gluon plasma * Adds a new chapter on nuclear astrophysics * Relates observed nuclear properties to the underlying nuclear interaction and the symmetry principles governing subatomic particles * Regroups material and appendices to make the text easier to use * Lists Internet links to essential databases and research projects * Features end-of-chapter exercises using real-world data. Introductory Nuclear Physics, Second Edition is an ideal text for courses in nuclear physics at the senior undergraduate or first-year graduate level. It is also an important resource for scientists and engineers working with nuclei, for astrophysicists and particle physicists, and for anyone wishing to learn more about trends in the field.
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.
An Introduction to the Standard Model of Particle Physics familiarizes readers with what is considered tested and accepted and in so doing, gives them a grounding in particle physics in general. Whenever possible, Dr. Mann takes an historical approach showing how the model is linked to the physics that most of us have learned in less challenging areas. Dr. Mann reviews special relativity and classical mechanics, symmetries, conservation laws, and particle classification; then working from the tested paradigm of the model itself, he: Describes the Standard Model in terms of its electromagnetic, strong, and weak components Explores the experimental tools and methods of particle physics Introduces Feynman diagrams, wave equations, and gauge invariance, building up to the theory of Quantum Electrodynamics Describes the theories of the Strong and Electroweak interactions Uncovers frontier areas and explores what might lie beyond our current concepts of the subatomic world Those who work through the material will develop a solid command of the basics of particle physics. The book does require a knowledge of special relativity, quantum mechanics, and electromagnetism, but most importantly it requires a hunger to understand at the most fundamental level: why things exist and how it is that anything happens. This book will prepare students and others for further study, but most importantly it will prepare them to open their minds to the mysteries that lie ahead. Ultimately, the Large Hadron Collider may prove the model correct, helping so many realize their greatest dreams ... or it might poke holes in the model, leaving us to wonder an even more exciting possibility: that the answers lie in possibilities so unique that we have not even dreamt of them.