Introduction To The Fractional Calculus Of Variations

Introduction To The Fractional Calculus Of Variations

Author: Delfim F M Torres

Publisher: World Scientific Publishing Company

Published: 2012-09-14

Total Pages: 292

ISBN-13: 184816968X

DOWNLOAD EBOOK

This invaluable book provides a broad introduction to the fascinating and beautiful subject of Fractional Calculus of Variations (FCV). In 1996, FVC evolved in order to better describe non-conservative systems in mechanics. The inclusion of non-conservatism is extremely important from the point of view of applications. Forces that do not store energy are always present in real systems. They remove energy from the systems and, as a consequence, Noether's conservation laws cease to be valid. However, it is still possible to obtain the validity of Noether's principle using FCV. The new theory provides a more realistic approach to physics, allowing us to consider non-conservative systems in a natural way. The authors prove the necessary Euler-Lagrange conditions and corresponding Noether theorems for several types of fractional variational problems, with and without constraints, using Lagrangian and Hamiltonian formalisms. Sufficient optimality conditions are also obtained under convexity, and Leitmann's direct method is discussed within the framework of FCV.The book is self-contained and unified in presentation. It may be used as an advanced textbook by graduate students and ambitious undergraduates in mathematics and mechanics. It provides an opportunity for an introduction to FCV for experienced researchers. The explanations in the book are detailed, in order to capture the interest of the curious reader, and the book provides the necessary background material required to go further into the subject and explore the rich research literature./a


The Variable-Order Fractional Calculus of Variations

The Variable-Order Fractional Calculus of Variations

Author: Ricardo Almeida

Publisher: Springer

Published: 2018-06-29

Total Pages: 135

ISBN-13: 3319940066

DOWNLOAD EBOOK

​The Variable-Order Fractional Calculus of Variations is devoted to the study of fractional operators with variable order and, in particular, variational problems involving variable-order operators. This brief presents a new numerical tool for the solution of differential equations involving Caputo derivatives of fractional variable order. Three Caputo-type fractional operators are considered, and for each one, an approximation formula is obtained in terms of standard (integer-order) derivatives only. Estimations for the error of the approximations are also provided. The contributors consider variational problems that may be subject to one or more constraints, where the functional depends on a combined Caputo derivative of variable fractional order. In particular, they establish necessary optimality conditions of Euler–Lagrange type. As the terminal point in the cost integral is free, as is the terminal state, transversality conditions are also obtained. The Variable-Order Fractional Calculus of Variations is a valuable source of information for researchers in mathematics, physics, engineering, control and optimization; it provides both analytical and numerical methods to deal with variational problems. It is also of interest to academics and postgraduates in these fields, as it solves multiple variational problems subject to one or more constraints in a single brief.


Advanced Methods in the Fractional Calculus of Variations

Advanced Methods in the Fractional Calculus of Variations

Author: Agnieszka B. Malinowska

Publisher: Springer

Published: 2015-02-05

Total Pages: 142

ISBN-13: 3319147560

DOWNLOAD EBOOK

This brief presents a general unifying perspective on the fractional calculus. It brings together results of several recent approaches in generalizing the least action principle and the Euler–Lagrange equations to include fractional derivatives. The dependence of Lagrangians on generalized fractional operators as well as on classical derivatives is considered along with still more general problems in which integer-order integrals are replaced by fractional integrals. General theorems are obtained for several types of variational problems for which recent results developed in the literature can be obtained as special cases. In particular, the authors offer necessary optimality conditions of Euler–Lagrange type for the fundamental and isoperimetric problems, transversality conditions, and Noether symmetry theorems. The existence of solutions is demonstrated under Tonelli type conditions. The results are used to prove the existence of eigenvalues and corresponding orthogonal eigenfunctions of fractional Sturm–Liouville problems. Advanced Methods in the Fractional Calculus of Variations is a self-contained text which will be useful for graduate students wishing to learn about fractional-order systems. The detailed explanations will interest researchers with backgrounds in applied mathematics, control and optimization as well as in certain areas of physics and engineering.


Introduction to Fractional Differential Equations

Introduction to Fractional Differential Equations

Author: Constantin Milici

Publisher: Springer

Published: 2018-10-28

Total Pages: 199

ISBN-13: 3030008959

DOWNLOAD EBOOK

This book introduces a series of problems and methods insufficiently discussed in the field of Fractional Calculus – a major, emerging tool relevant to all areas of scientific inquiry. The authors present examples based on symbolic computation, written in Maple and Mathematica, and address both mathematical and computational areas in the context of mathematical modeling and the generalization of classical integer-order methods. Distinct from most books, the present volume fills the gap between mathematics and computer fields, and the transition from integer- to fractional-order methods.


Generalized Fractional Calculus and Applications

Generalized Fractional Calculus and Applications

Author: Virginia S Kiryakova

Publisher: CRC Press

Published: 1993-12-27

Total Pages: 412

ISBN-13: 9780582219779

DOWNLOAD EBOOK

In this volume various applications are discussed, in particular to the hyper-Bessel differential operators and equations, Dzrbashjan-Gelfond-Leontiev operators and Borel type transforms, convolutions, new representations of hypergeometric functions, solutions to classes of differential and integral equations, transmutation method, and generalized integral transforms. Some open problems are also posed. This book is intended for graduate and post-graduate students, lecturers, researchers and others working in applied mathematical analysis, mathematical physics and related disciplines.


Introduction to the Calculus of Variations

Introduction to the Calculus of Variations

Author: Bernard Dacorogna

Publisher: Imperial College Press

Published: 2009

Total Pages: 241

ISBN-13: 1848163339

DOWNLOAD EBOOK

The calculus of variations is one of the oldest subjects in mathematics, yet is very much alive and is still evolving. Besides its mathematical importance and its links to other branches of mathematics, such as geometry or differential equations, it is widely used in physics, engineering, economics and biology.This book serves both as a guide to the expansive existing literature and as an aid to the non-specialist ? mathematicians, physicists, engineers, students or researchers ? in discovering the subject's most important problems, results and techniques. Despite the aim of addressing non-specialists, mathematical rigor has not been sacrificed; most of the theorems are either fully proved or proved under more stringent conditions.In this new edition, the chapter on regularity has been significantly expanded and 27 new exercises have been added. The book, containing a total of 103 exercises with detailed solutions, is well designed for a course at both undergraduate and graduate levels.


Computational Methods In The Fractional Calculus Of Variations

Computational Methods In The Fractional Calculus Of Variations

Author: Ricardo Almeida

Publisher: World Scientific Publishing Company

Published: 2015-03-19

Total Pages: 279

ISBN-13: 1783266422

DOWNLOAD EBOOK

This book fills a gap in the literature by introducing numerical techniques to solve problems of fractional calculus of variations (FCV). In most cases, finding the analytic solution to such problems is extremely difficult or even impossible, and numerical methods need to be used.The authors are well-known researchers in the area of FCV and the book contains some of their recent results, serving as a companion volume to Introduction to the Fractional Calculus of Variations by A B Malinowska and D F M Torres, where analytical methods are presented to solve FCV problems. After some preliminaries on the subject, different techniques are presented in detail with numerous examples to help the reader to better understand the methods. The techniques presented may be used not only to deal with FCV problems but also in other contexts of fractional calculus, such as fractional differential equations and fractional optimal control. It is suitable as an advanced book for graduate students in mathematics, physics and engineering, as well as for researchers interested in fractional calculus.


Fractional Calculus

Fractional Calculus

Author: Dumitru Baleanu

Publisher: World Scientific

Published: 2012

Total Pages: 426

ISBN-13: 9814355208

DOWNLOAD EBOOK

This title will give readers the possibility of finding very important mathematical tools for working with fractional models and solving fractional differential equations, such as a generalization of Stirling numbers in the framework of fractional calculus and a set of efficient numerical methods.


Fractional Differential Equations

Fractional Differential Equations

Author: Igor Podlubny

Publisher: Elsevier

Published: 1998-10-27

Total Pages: 366

ISBN-13: 0080531989

DOWNLOAD EBOOK

This book is a landmark title in the continuous move from integer to non-integer in mathematics: from integer numbers to real numbers, from factorials to the gamma function, from integer-order models to models of an arbitrary order. For historical reasons, the word 'fractional' is used instead of the word 'arbitrary'.This book is written for readers who are new to the fields of fractional derivatives and fractional-order mathematical models, and feel that they need them for developing more adequate mathematical models.In this book, not only applied scientists, but also pure mathematicians will find fresh motivation for developing new methods and approaches in their fields of research.A reader will find in this book everything necessary for the initial study and immediate application of fractional derivatives fractional differential equations, including several necessary special functions, basic theory of fractional differentiation, uniqueness and existence theorems, analytical numerical methods of solution of fractional differential equations, and many inspiring examples of applications. - A unique survey of many applications of fractional calculus - Presents basic theory - Includes a unified presentation of selected classical results, which are important for applications - Provides many examples - Contains a separate chapter of fractional order control systems, which opens new perspectives in control theory - The first systematic consideration of Caputo's fractional derivative in comparison with other selected approaches - Includes tables of fractional derivatives, which can be used for evaluation of all considered types of fractional derivatives


An Introduction to Fractional Calculus

An Introduction to Fractional Calculus

Author: A. M. Mathai

Publisher: Nova Science Publishers

Published: 2017

Total Pages: 0

ISBN-13: 9781536120424

DOWNLOAD EBOOK

This is a modified version of Module 10 of the Centre for Mathematical and Statistical Sciences (CMSS). CMSS modules are notes prepared on various topics with many examples from real-life situations and exercises so that the subject matter becomes interesting to students. These modules are used for undergraduate level courses and graduate level training in various topics at CMSS. Aside from Module 8, these modules were developed by Dr A M Mathai, Director of CMSS and Emeritus Professor of Mathematics and Statistics, McGill University, Canada. Module 8 is based on the lecture notes of Professor W J Anderson of McGill University, developed for his undergraduate course (Mathematics 447). Professor Dr Hans J Haubold has been a research collaborator of Dr A M Mathais since 1984, mainly in the areas of astrophysics, special functions and statistical distribution theory. He is also a lifetime member of CMSS and a Professor at CMSS. A large number of papers have been published jointly in these areas since 1984. The following monographs and books have been brought out in conjunction with this joint research: Modern Problems in Nuclear and Neutrino Astrophysics (A M Mathai and H J Haubold, 1988, Akademie-Verlag, Berlin); Special Functions for Applied Scientists (A MMathai and H J Haubold, 2008, Springer, New York); and The H-Function: Theory and Applications (A M Mathai, R K Saxena and H J Haubold, 2010, Springer, New York). These CMSS modules are printed at CMSS Press and published by CMSS. Copies are made available to students free of charge, and to researchers and others at production cost. For the preparation of the initial drafts of all these modules, financial assistance was made available from the Department of Science and Technology, the Government of India (DST), New Delhi under project number SR/S4/MS:287/05. Hence, the authors would like to express their thanks and gratitude to DST, the Government of India, for its financial assistance.